scholarly journals Next generation diagnostic molecular pathology: Critical appraisal of quality assurance in Europe

2014 ◽  
Vol 8 (4) ◽  
pp. 830-839 ◽  
Author(s):  
Hendrikus J. Dubbink ◽  
Zandra C. Deans ◽  
Bastiaan B.J. Tops ◽  
Folkert J. van Kemenade ◽  
S. Koljenović ◽  
...  
Author(s):  
A. J. Robertson ◽  
J. Swanson Beck

There is widespread interest in development of approaches to monitoring the quality of the diagnostic service provided by pathology departments. Novel approaches are being developed for analysis of performance, while there is active interest in the selection of diagnostic categories that can be reliably applied in service laboratories. Initial progress has been slow but organisational problems and professional inertia have been largely overcome. The scene is now set for continuing critical appraisal which must lead to improvements in clinical care.


Author(s):  
Fang Zhao ◽  
David S. Bosler ◽  
James R. Cook

Context.— Next-generation sequencing studies are increasingly used in the evaluation of suspected chronic myeloid neoplasms (CMNs), but there is wide variability among laboratories in the genes analyzed for this purpose. Recently, the Association for Molecular Pathology CMN working group recommended a core 34-gene set as a minimum target list for evaluation of CMNs. This list was recommended based on literature review, and its diagnostic yield in clinical practice is unknown. Objective.— To determine the diagnostic yield of the core 34 genes and assess the potential impact of including selected additional genes. Design.— We retrospectively reviewed 185 patients with known or suspected CMNs tested using a 62-gene next-generation sequencing panel that included all 34 core genes. Results.— The Association for Molecular Pathology's core 34 genes had a diagnostic yield of 158 of 185 (85.4%) to detect at least 1 variant with strong/potential clinical significance and 107 of 185 (57.8%) to detect at least 2 such variants. The 62-gene panel had a diagnostic yield of 160 of 185 (86.5%) and 112 of 185 (60.5%), respectively. Variants of unknown significance were identified in 49 of 185 (26.5%) using the core 34 genes versus 76 of 185 (41.1%) using the 62-gene panel. Conclusions.— This study demonstrates that the Association for Molecular Pathology–recommended core 34-gene set has a high diagnostic yield in CMNs. Inclusion of selected additional genes slightly increases the rate of abnormal results, while also increasing the detection of variants of unknown significance. We recommend inclusion of CUX1, DDX41, ETNK1, RIT1, and SUZ12 in addition to the Association for Molecular Pathology's 34-gene core set for routine evaluation of CMNs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aditi Sahu ◽  
Yuna Oh ◽  
Gary Peterson ◽  
Miguel Cordova ◽  
Cristian Navarrete-Dechent ◽  
...  

AbstractConventional tissue sampling can lead to misdiagnoses and repeated biopsies. Additionally, tissue processed for histopathology suffers from poor nucleic acid quality and/or quantity for downstream molecular profiling. Targeted micro-sampling of tissue can ensure accurate diagnosis and molecular profiling in the presence of spatial heterogeneity, especially in tumors, and facilitate acquisition of fresh tissue for molecular analysis. In this study, we explored the feasibility of performing 1–2 mm precision biopsies guided by high-resolution reflectance confocal microscopy (RCM) and optical coherence tomography (OCT), and reflective metallic grids for accurate spatial targeting. Accurate sampling was confirmed with either histopathology or molecular profiling through next generation sequencing (NGS) in 9 skin cancers in 7 patients. Imaging-guided 1–2 mm biopsies enabled spatial targeting for in vivo diagnosis, feature correlation and depth assessment, which were confirmed with histopathology. In vivo 1-mm targeted biopsies achieved adequate quantity and high quality of DNA for next-generation sequencing. Subsequent mutational profiling was confirmed on 1 melanoma in situ and 2 invasive melanomas, using a 505-gene mutational panel called Memorial Sloan Kettering-Integrated mutational profiling of actionable cancer targets (MSK-IMPACT). Differential mutational landscapes, in terms of number and types of mutations, were found between invasive and in situ melanomas in a single patient. Our findings demonstrate feasibility of accurate sampling of regions of interest for downstream histopathological diagnoses and molecular pathology in both in vivo and ex vivo settings with broad diagnostic, therapeutic and research potential in cutaneous diseases accessible by RCM-OCT imaging.


Sign in / Sign up

Export Citation Format

Share Document