scholarly journals 4-Coumaroyl and Caffeoyl Shikimic Acids Inhibit 4-Coumaric Acid:Coenzyme A Ligases and Modulate Metabolic Flux for 3-Hydroxylation in Monolignol Biosynthesis of Populus trichocarpa

2015 ◽  
Vol 8 (1) ◽  
pp. 176-187 ◽  
Author(s):  
Chien-Yuan Lin ◽  
Jack P. Wang ◽  
Quanzi Li ◽  
Hsi-Chuan Chen ◽  
Jie Liu ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Chien-Yuan Lin ◽  
Yi Sun ◽  
Jina Song ◽  
Hsi-Chuan Chen ◽  
Rui Shi ◽  
...  

Co-enzyme A (CoA) ligation of hydroxycinnamic acids by 4-coumaric acid:CoA ligase (4CL) is a critical step in the biosynthesis of monolignols. Perturbation of 4CL activity significantly impacts the lignin content of diverse plant species. In Populus trichocarpa, two well-studied xylem-specific Ptr4CLs (Ptr4CL3 and Ptr4CL5) catalyze the CoA ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. Subsequently, two 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) mediate the conversion of 4-coumaroyl-CoA to caffeoyl-CoA. Here, we show that the CoA ligation of 4-coumaric and caffeic acids is modulated by Ptr4CL/PtrHCT protein complexes. Downregulation of PtrHCTs reduced Ptr4CL activities in the stem-differentiating xylem (SDX) of transgenic P. trichocarpa. The Ptr4CL/PtrHCT interactions were then validated in vivo using biomolecular fluorescence complementation (BiFC) and protein pull-down assays in P. trichocarpa SDX extracts. Enzyme activity assays using recombinant proteins of Ptr4CL and PtrHCT showed elevated CoA ligation activity for Ptr4CL when supplemented with PtrHCT. Numerical analyses based on an evolutionary computation of the CoA ligation activity estimated the stoichiometry of the protein complex to consist of one Ptr4CL and two PtrHCTs, which was experimentally confirmed by chemical cross-linking using SDX plant protein extracts and recombinant proteins. Based on these results, we propose that Ptr4CL/PtrHCT complexes modulate the metabolic flux of CoA ligation for monolignol biosynthesis during wood formation in P. trichocarpa.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10741
Author(s):  
Nan Chao ◽  
Qi Qi ◽  
Shuang Li ◽  
Brent Ruan ◽  
Xiangning Jiang ◽  
...  

Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) divides the mass flux to H, G and S units in monolignol biosynthesis and affects lignin content. Ten HCT homologs were identified in the Populus trichocarpa (Torr. & Gray) genome. Both genome duplication and tandem duplication resulted in the expansion of HCT orthologs in Populus. Comprehensive analysis including motif analysis, phylogenetic analysis, expression profiles and co-expression analysis revealed the divergence and putative function of these candidate PoptrHCTs. PoptrHCT1 and 2 were identified as likely involved in lignin biosynthesis. PoptrHCT9 and 10- are likely to be involved in plant development and the response to cold stress. Similar functional divergence was also identified in Populus tomentosa Carr. Enzymatic assay of PtoHCT1 showed that PtoHCT1 was able to synthesize caffeoyl shikimate using caffeoyl-CoA and shikimic acid as substrates.


2015 ◽  
Vol 112 (27) ◽  
pp. 8481-8486 ◽  
Author(s):  
Jack P. Wang ◽  
Ling Chuang ◽  
Philip L. Loziuk ◽  
Hao Chen ◽  
Ying-Chung Lin ◽  
...  

Although phosphorylation has long been known to be an important regulatory modification of proteins, no unequivocal evidence has been presented to show functional control by phosphorylation for the plant monolignol biosynthetic pathway. Here, we present the discovery of phosphorylation-mediated on/off regulation of enzyme activity for 5-hydroxyconiferaldehyde O-methyltransferase 2 (PtrAldOMT2), an enzyme central to monolignol biosynthesis for lignification in stem-differentiating xylem (SDX) of Populus trichocarpa. Phosphorylation turned off the PtrAldOMT2 activity, as demonstrated in vitro by using purified phosphorylated and unphosphorylated recombinant PtrAldOMT2. Protein extracts of P. trichocarpa SDX, which contains endogenous kinases, also phosphorylated recombinant PtrAldOMT2 and turned off the recombinant protein activity. Similarly, ATP/Mn2+-activated phosphorylation of SDX protein extracts reduced the endogenous SDX PtrAldOMT2 activity by ∼60%, and dephosphorylation fully restored the activity. Global shotgun proteomic analysis of phosphopeptide-enriched P. trichocarpa SDX protein fractions identified PtrAldOMT2 monophosphorylation at Ser123 or Ser125 in vivo. Phosphorylation-site mutagenesis verified the PtrAldOMT2 phosphorylation at Ser123 or Ser125 and confirmed the functional importance of these phosphorylation sites for O-methyltransferase activity. The PtrAldOMT2 Ser123 phosphorylation site is conserved across 93% of AldOMTs from 46 diverse plant species, and 98% of the AldOMTs have either Ser123 or Ser125. PtrAldOMT2 is a homodimeric cytosolic enzyme expressed more abundantly in syringyl lignin-rich fiber cells than in guaiacyl lignin-rich vessel cells. The reversible phosphorylation of PtrAldOMT2 is likely to have an important role in regulating syringyl monolignol biosynthesis of P. trichocarpa.


2018 ◽  
Vol 222 (1) ◽  
pp. 244-260 ◽  
Author(s):  
Xiaojing Yan ◽  
Jie Liu ◽  
Hoon Kim ◽  
Baoguang Liu ◽  
Xiong Huang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ritesh Ghosh ◽  
Bosung Choi ◽  
Byoung-Kwan Cho ◽  
Hyoun-Sub Lim ◽  
Sang-Un Park ◽  
...  

Cinnamoyl-CoA reductase (CCR) is an important enzyme for lignin biosynthesis as it catalyzes the first specific committed step in monolignol biosynthesis. We have cloned a full length coding sequence ofCCRfrom kenaf (Hibiscus cannabinusL.), which contains a 1,020-bp open reading frame (ORF), encoding 339 amino acids of 37.37 kDa, with an isoelectric point (pI) of 6.27 (JX524276,HcCCR2). BLAST result found that it has high homology with other plant CCR orthologs. Multiple alignment with other plant CCR sequences showed that it contains two highly conserved motifs: NAD(P) binding domain (VTGAGGFIASWMVKLLLEKGY) at N-terminal and probable catalytic domain (NWYCYGK). According to phylogenetic analysis, it was closely related to CCR sequences ofGossypium hirsutum(ACQ59094) andPopulus trichocarpa(CAC07424).HcCCR2showed ubiquitous expression in various kenaf tissues and the highest expression was detected in mature flower.HcCCR2was expressed differentially in response to various stresses, and the highest expression was observed by drought and NaCl treatments.


1991 ◽  
Vol 83 (1) ◽  
pp. 136-143 ◽  
Author(s):  
L. Bray ◽  
D. Chriqui ◽  
K. Gloux ◽  
D. Le Rudulier ◽  
M. Meyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document