A cell wall-localized NLR confers resistance to Soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein

2021 ◽  
Author(s):  
Jinlong Yin ◽  
Liqun Wang ◽  
Tongtong Jin ◽  
Yang Nie ◽  
Hui Liu ◽  
...  
2017 ◽  
Vol 175 (4) ◽  
pp. 1732-1744 ◽  
Author(s):  
Nooshin Movahed ◽  
Camilo Patarroyo ◽  
Jiaqi Sun ◽  
Hojatollah Vali ◽  
Jean-François Laliberté ◽  
...  

1994 ◽  
Vol 141 (2) ◽  
pp. 186-194
Author(s):  
G. Boudazin ◽  
C. Vergnet ◽  
B. Gélie ◽  
M. Meyer ◽  
J. Grosclaude ◽  
...  

2008 ◽  
Vol 89 (3) ◽  
pp. 829-838 ◽  
Author(s):  
Rasa Gabrenaite-Verkhovskaya ◽  
Igor A. Andreev ◽  
Natalia O. Kalinina ◽  
Lesley Torrance ◽  
Michael E. Taliansky ◽  
...  

Potato virus A (PVA) particles were purified by centrifugation through a 30 % sucrose cushion and the pellet (P1) was resuspended and sedimented through a 5–40 % sucrose gradient. The gradient separation resulted in two different virus particle populations: a virus fraction (F) that formed a band in the gradient and one that formed a pellet (P2) at the bottom of the gradient. All three preparations contained infectious particles that retained their integrity when visualized by electron microscopy (EM). Western blotting of the P1 particles revealed that the viral RNA helicase, cylindrical inclusion protein (CI), co-purified with virus particles. This result was confirmed with co-immunoprecipitation experiments. CI was detected in P2 particle preparations, whereas F particles were devoid of detectable amounts of CI. ATPase activity was detected in all three preparations with the greatest amount in P2. Results from immunogold-labelling EM experiments suggested that a fraction of the CI present in the preparations was localized to one end of the virion. Atomic force microscopy (AFM) studies showed that P1 and P2 contained intact particles, some of which had a protruding tip structure at one end, whilst F virions were less stable and mostly appeared as beaded structures under the conditions of AFM. The RNA of the particles in F was translated five to ten times more efficiently than RNA from P2 particles when these preparations were subjected to translation in wheat-germ extracts. The results are discussed in the context of a model for CI-mediated functions.


2009 ◽  
Vol 22 (9) ◽  
pp. 1151-1159 ◽  
Author(s):  
Jang-Kyun Seo ◽  
Suk-Ha Lee ◽  
Kook-Hyung Kim

In the Soybean mosaic virus (SMV)–soybean pathosystem, three independent genes (Rsv1, Rsv3, and Rsv4) conferring resistance to SMV have been identified. Recently, we constructed infectious cDNA clones of SMV G7H and G5H strains and found that these two strains differ in their ability to infect soybean genotypes possessing different SMV resistance genes despite a difference of only 33 amino acids. In particular, pSMV-G7H induced mosaic symptoms systemically in L29 (Rsv3) and provoked a lethal systemic hypersensitive response (LSHR) in Jinpumkong-2, whereas pSMV-G5H could not infect these soybean genotypes. To identify the responsible pathogenic determinants of SMV, we exploited the differential responses of pSMV-G7H- and pSMV-G5H-derived chimeric viruses and amino acid substitution mutant viruses in several soybean genotypes and demonstrated that cylindrical inclusion (CI) protein is the elicitor of Rsv3-mediated extreme resistance and a pathogenic determinant provoking LSHR in Jinpumkong-2. A single amino acid substitution in CI was found to be responsible for gain or loss of elicitor function of CI. Our finding provides a role for CI as a pathogenic determinant in the SMV–soybean pathosystem, and increases the understanding of the basis of the different disease responses of SMV strains.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 641-644 ◽  
Author(s):  
Yul-Ho Kim ◽  
Ok-Sun Kim ◽  
Jae-Hwan Roh ◽  
Jung-Kyung Moon ◽  
Soo-In Sohn ◽  
...  

A reverse-transcriptase polymerase chain reaction/restriction fragment length polymorphism (RT-PCR/RFLP) was employed successfully for detection and identification of Soybean mosaic virus (SMV) strains. A primer pair amplifying a 1,385-bp fragment of the cylindrical inclusion (CI) coding region was used for RT-PCR and the RFLP profiles of the RT-PCR products were compared after restriction digestion with RsaI, EcoRI, or AccI restriction endonucleases. These enzymes were chosen based on the nucleotide sequences of SMV strains G2, G5, G5H, G7, and G7H in the CI coding region. These five strains, as well as seedborne SMV isolates from local soybean cultivars, could be differentiated by RT-PCR/RFLP analysis. The results correlated well with strain identification by symptom phenotypes produced on differential cultivars inoculated with strains and isolates. The sensitivity of RT-PCR enabled detection of SMV from plants with necrotic symptoms in which the number of virus particles was too low to be detected by enzyme-linked immunosorbent assay.


Virology ◽  
1988 ◽  
Vol 163 (2) ◽  
pp. 503-508 ◽  
Author(s):  
Huguette Albrecht ◽  
Angèle Geldreich ◽  
Josiane Menissier De Murcia ◽  
Daniel Kirchherr ◽  
Jean-Michel Mesnard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document