nicotiana clevelandii
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 0)

H-INDEX

17
(FIVE YEARS 0)

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
I. U. Mohammed ◽  
M. M. Abarshi ◽  
B. Muli ◽  
R. J. Hillocks ◽  
M. N. Maruthi

The genetic and symptom diversity of six virus isolates causing cassava brown streak disease (CBSD) in the endemic (Kenya, Mozambique, and Tanzania) and the recently affected epidemic areas (Uganda) of eastern Africa was studied. Five cassava varieties; Albert, Colombian, Ebwanateraka, TMS60444 (all susceptible) and Kiroba (tolerant) were graft inoculated with each isolate. Based on a number of parameters including the severity of leaf and root symptoms, and the extent of virus transmission by grafting, the viruses were classified as either severe or relatively mild. These results were further confirmed by the mechanical inoculation of 13 herbaceous hosts in which the virulent isolates caused plant death inNicotiana clevelandiiandN. benthamianawhereas the milder isolates did not. Phylogenetic analysis of complete coat protein gene sequences of these isolates together with sequences obtained from 14 other field-collected samples from Kenya and Zanzibar, and reference sequences grouped them into two distinct clusters, representing the two species of cassava brown streak viruses. Put together, these results did not suggest the association of a hypervirulent form of the virus with the current CBSD epidemic in Uganda. Identification of the severe and milder isolates, however, has further implications for disease management and quarantine requirements.


Author(s):  
Shakhnoza S. Azimova ◽  
Anna I. Glushenkova

2011 ◽  
Vol 92 (12) ◽  
pp. 2706-2710 ◽  
Author(s):  
Bu-Jun Shi ◽  
Peter Palukaitis

The roles for various regions of the 2b protein in infection, hypervirulence and recombination were examined by introducing stop codons in a chimeric virus containing RNA 1 from the cucumber mosaic virus (CMV strain Q), RNA 3 from the tomato aspermy virus (TAV) and RNA 2 of CMV with a 2b gene from TAV. Chimeric virus expressing the intact 2b protein induced severe symptoms in inoculated Nicotiana clevelandii and Nicotiana glutinosa and facilitated CMV–TAV recombination, while chimeric viruses not expressing 2b protein did not infect plants systemically. Chimeric viruses expressing either the N-terminal 43 or 12 aa of the 2b protein infected both plant species systemically and facilitated CMV–TAV recombination, but induced mild symptoms and no symptoms in the infected plants, respectively. These data suggest that oligopeptides can have important functions in the biology of viruses and prompt a re-examination of existing small ORFs in sequenced virus genomes.


2006 ◽  
Vol 52 (5) ◽  
pp. 419-426 ◽  
Author(s):  
Fernando D Andreote ◽  
Paulo T Lacava ◽  
Cláudia S Gai ◽  
Welington L Araújo ◽  
Walter Maccheroni, Jr. ◽  
...  

Over the last few years, endophytic bacterial communities associated with citrus have been studied as key components interacting with Xylella fastidiosa. In this study, we investigated the possible interaction between the citrus endophyte Methylobacterium mesophilicum SR1.6/6 and X. fastidiosa in model plants such as Catharanthus roseus (Madagaskar periwinkle) and Nicotiana clevelandii (Clevelands tobacco). The aim of this study was to establish the fate of M. mesophilicum SR1.6/6 after inoculation of C. roseus and N. clevelandii plants, using PCR–DGGE (polymerase chain reaction – denaturing gradient gel electrophoresis) and plating techniques. Shifts in the indigenous endophytic bacterial communities were observed in plants inoculated with strain SR1.6/6, using specific primers targeting α- and β-Proteobacteria. Cells of strain SR1.6/6 were observed in a biofilm structure on the root and hypocotyl surfaces of in vitro seedlings inoculated with M. mesophilicum SR1.6/6. This emphasizes the importance of these tissues as main points of entrance for this organism. The results showed that C. roseus and N. clevelandii could be used as model plants to study the interaction between M. mesophilicum and X. fastidiosa.Key words: endophytic, Methylobacterium, model plants, DGGE.


2005 ◽  
Vol 79 (15) ◽  
pp. 9381-9387 ◽  
Author(s):  
D. Chen ◽  
S. Juárez ◽  
L. Hartweck ◽  
J. M. Alamillo ◽  
C. Simón-Mateo ◽  
...  

ABSTRACT Serine and threonine of many nuclear and cytoplasmic proteins are posttranslationally modified with O-linked N-acetylglucosamine (O-GlcNAc). This modification is made by O-linked N-acetylglucosamine transferases (OGTs). Genetic and biochemical data have demonstrated the existence of two OGTs of Arabidopsis thaliana, SECRET AGENT (SEC) and SPINDLY (SPY), with at least partly overlapping functions, but there is little information on their target proteins. The N terminus of the capsid protein (CP) of Plum pox virus (PPV) isolated from Nicotiana clevelandii is O-GlcNAc modified. We show here that O-GlcNAc modification of PPV CP also takes place in other plant hosts, N. benthamiana and Arabidopsis. PPV was able to infect the Arabidopsis OGT mutants sec-1, sec-2, and spy-3, but at early times of the infection, both rate of virus spread and accumulation were reduced in sec-1 and sec-2 relative to spy-3 and wild-type plants. By matrix-assisted laser desorption ionization-time of flight mass spectrometry, we determined that a 39-residue tryptic peptide from the N terminus of CP of PPV purified from the spy-3 mutant, but not sec-1 or sec-2, was O-GlcNAc modified, suggesting that SEC but not SPY modifies the capsid. While our results indicate that O-GlcNAc modification of PPV CP by SEC is not essential for infection, they show that the modification has a role(s) in the process.


2004 ◽  
Vol 17 (8) ◽  
pp. 837-845 ◽  
Author(s):  
Zoltán Divéki ◽  
Katalin Salánki ◽  
Ervin Balázs

The unique Ns isolate of Cucumber mosaic virus (CMV) induces necrotic lesions on several Nicotiana spp. in contrast to other strains that cause systemic mosaic on these plants. By using biologically active RNA transcripts from cDNAs of Ns-CMV and a reference subgroup I strain Rs-CMV, we confined the genetic determinant solely responsible for necrosis induction to amino acid 461 of the 1a protein translated from genomic RNA1. An Arg to Cys change at this position (R461C) rendered Rs-CMV necrotic, whereas the reciprocal C461R mutation reverted the necrotic phenotype of Ns-CMV. Necrotic (Ns-CMV, R461C) and non-necrotic (Rs-CMV and C461R) viruses accumulated to similar levels in Nicotiana clevelandii protoplasts. Deletion of the residue at position 461 abolished replicase activity of the Ns-CMV 1a protein. The R461C mutation also was introduced into the 1a protein of Trk7-CMV, a subgroup II isolate. Symptoms induced by the Trk7/R461C mutant were identical to those caused by wild-type Trk7-CMV, even when the mutant Trk7 RNA1 was co-inoculated with RNA2 and 3 of the necrotic Ns strain.


2004 ◽  
Vol 94 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Susana Llamas ◽  
Claudio Sandoval ◽  
Mar Babin ◽  
Judy Pogany ◽  
Jozef J. Bujarski ◽  
...  

Previously, we demonstrated that Broad bean mottle virus (BBMV), a member of the genus Bromovirus, could accumulate RNA 2-derived defective interfering (DI) RNAs during infection. In this work, we study how host and environmental factors affect the accumulation of DI RNAs. Serial passages of BBMV through selected plant species reveal that, with low-multiplicity inocula, some systemic hosts (Vicia faba, Nicotiana clevelandii, and N. tabacum cv. Samsum) support DI RNA accumulation after the first passage cycle but other hosts (Phaseolus vulgaris, Pisum sativum, and Glycine max) do not. However, several passages with the high-multiplicity inocula can generate DI RNAs in pea plants. Local lesion hosts (Chenopodium quinoa, C. amaranticolor, and C. murale) remain free of the DI RNA components. The size of the de novo-formed DI RNAs depends on the host and on environmental conditions. For instance, broad bean plants cultivated in a greenhouse or in a growth chamber at 20°C accumulated DI RNAs of 2.4 or 1.9 kb in size, respectively. A reverse trend was observed in pea plants. Lower temperatures greatly facilitated the formation of DI RNAs in broad bean and pea hosts after the first passage. The importance of these findings for the studies on DI RNAs are discussed.


Sign in / Sign up

Export Citation Format

Share Document