The Small GTPase RABA2a Recruits SNARE Proteins to Regulate Secretory Pathway in Parallel with the Exocyst Complex in Arabidopsis

2021 ◽  
Author(s):  
Lei Pang ◽  
Zhiming Ma ◽  
Xi Zhang ◽  
Yuanzhi Huang ◽  
Ruili Li ◽  
...  
2010 ◽  
Vol 21 (15) ◽  
pp. 2624-2638 ◽  
Author(s):  
Cornelia Kilchert ◽  
Julie Weidner ◽  
Cristina Prescianotto-Baschong ◽  
Anne Spang

mRNA is sequestered and turned over in cytoplasmic processing bodies (PBs), which are induced by various cellular stresses. Unexpectedly, in Saccharomyces cerevisiae, mutants of the small GTPase Arf1 and various secretory pathway mutants induced a significant increase in PB number, compared with PB induction by starvation or oxidative stress. Exposure of wild-type cells to osmotic stress or high extracellular Ca2+ mimicked this increase in PB number. Conversely, intracellular Ca2+-depletion strongly reduced PB formation in the secretory mutants. In contrast to PB induction through starvation or osmotic stress, PB formation in secretory mutants and by Ca2+ required the PB components Pat1 and Scd6, and calmodulin, indicating that different stressors act through distinct pathways. Consistent with this hypothesis, when stresses were combined, PB number did not correlate with the strength of the translational block, but rather with the type of stress encountered. Interestingly, independent of the stressor, PBs appear as spheres of ∼40–100 nm connected to the endoplasmic reticulum (ER), consistent with the idea that translation and silencing/degradation occur in a spatially coordinated manner at the ER. We propose that PB assembly in response to stress occurs at the ER and depends on intracellular signals that regulate PB number.


2000 ◽  
Vol 11 (8) ◽  
pp. 2673-2689 ◽  
Author(s):  
Anjon Audhya ◽  
Michelangelo Foti ◽  
Scott D. Emr

The yeast Saccharomyces cerevisiae possesses two genes that encode phosphatidylinositol (PtdIns) 4-kinases,STT4 and PIK1. Both gene products phosphorylate PtdIns at the D-4 position of the inositol ring to generate PtdIns(4)P, which plays an essential role in yeast viability because deletion of either STT4 orPIK1 is lethal. Furthermore, although both enzymes have the same biochemical activity, increased expression of either kinase cannot compensate for the loss of the other, suggesting that these kinases regulate distinct intracellular functions, each of which is required for yeast cell growth. By the construction of temperature-conditional single and double mutants, we have found that Stt4p activity is required for the maintenance of vacuole morphology, cell wall integrity, and actin cytoskeleton organization. In contrast, Pik1p is essential for normal secretion, Golgi and vacuole membrane dynamics, and endocytosis. Strikingly,pik1tscells exhibit a rapid defect in secretion of Golgi-modified secretory pathway cargos, Hsp150p and invertase, whereas stt4tscells exhibit no detectable secretory defects. Both single mutants reduce PtdIns(4)P by ∼50%; however,stt4ts/pik1tsdouble mutant cells produce more than 10-fold less PtdIns(4)P as well as PtdIns(4,5)P2. The aberrant Golgi morphology found in pik1tsmutants is strikingly similar to that found in cells lacking the function of Arf1p, a small GTPase that is known to regulate multiple membrane trafficking events throughout the cell. Consistent with this observation, arf1 mutants exhibit reduced PtdIns(4)P levels. In contrast, diminished levels of PtdIns(4)P observed in stt4tscells at restrictive temperature result in a dramatic change in vacuole size compared with pik1tscells and persistent actin delocalization. Based on these results, we propose that Stt4p and Pik1p act as the major, if not the only, PtdIns 4-kinases in yeast and produce distinct pools of PtdIns(4)P and PtdIns(4,5)P2that act on different intracellular membranes to recruit or activate as yet uncharacterized effector proteins.


2000 ◽  
Vol 113 (1) ◽  
pp. 145-152 ◽  
Author(s):  
M.M. Tsui ◽  
D.K. Banfield

The transport of proteins between various compartments of the secretory pathway occurs by the budding of vesicles from one membrane and their fusion with another. A key event in this process is the selective recognition of the target membrane by the vesicle and the current view is that SNARE protein interactions likely play a central role in vesicle-target recognition and or membrane fusion. In yeast, only a single syntaxin (Sed5p) is required for Golgi transport and Sed5p is known to bind to at least 7 SNARE proteins. However, the number of Sed5p-containing SNARE complexes that exist in cells is not known. In this study we examined direct pair-wise interactions between full length soluble recombinant forms of SNAREs (Sed5p, Sft1p, Ykt6p, Vti1p, Gos1p, Sec22p, Bos1p, and Bet1p) involved in ER-Golgi and intra-Golgi membrane trafficking. In the binding assay that we describe here the majority of SNARE-binary interactions tested were positive, indicating that SNARE-SNARE interactions although promiscuous are not entirely non-selective. Interactions between a number of the genes encoding these SNAREs are consistent with our binding data and taken together our results suggest that functionally redundant Golgi SNARE-complexes exist in yeast. In particular, over-expression of Bet1p (a SNARE required for ER-Golgi and Golgi-ER traffic) and can bypass the requirement for the otherwise essential SNARE Sft1p (required for intra-Golgi traffic), suggesting that Bet1p either functions in a parallel pathway with Sft1p or can be incorporated into SNARE-complexes in place of Sftp1. None-the-less this result suggests that Bet1p can participate in two distinct trafficking steps, cycling between the ER and Golgi as well as in retrograde intra-Golgi traffic. In addition, suppressor genetics together with the analysis of the phenotypes of conditional mutations in Sft1p and Ykt6p, are consistent with a role for these SNAREs in more than one trafficking step. We propose that different combinations of SNAREs form complexes with Sed5p and are required for multiple steps in ER-Golgi and intra-Golgi vesicular traffic. And that the apparent promiscuity of SNARE-SNARE binding interactions, together with the requirement for some SNAREs in more than one trafficking step, supports the view that the specificity of vesicle fusion events cannot be explained solely on the basis of SNARE-SNARE interactions.


1997 ◽  
Vol 137 (7) ◽  
pp. 1495-1509 ◽  
Author(s):  
Christiane Walch-Solimena ◽  
Ruth N. Collins ◽  
Peter J. Novick

The small GTPase Sec4p is required for vesicular transport at the post-Golgi stage of yeast secretion. Here we present evidence that mutations in SEC2, itself an essential gene that acts at the same stage of the secretory pathway, cause Sec4p to mislocalize as a result of a random rather than a polarized accumulation of vesicles. Sec2p and Sec4p interact directly, with the nucleotide-free conformation of Sec4p being the preferred state for interaction with Sec2p. Sec2p functions as an exchange protein, catalyzing the dissociation of GDP from Sec4 and promoting the binding of GTP. We propose that Sec2p functions to couple the activation of Sec4p to the polarized delivery of vesicles to the site of exocytosis.


2010 ◽  
Vol 38 (2) ◽  
pp. 723-728 ◽  
Author(s):  
Viktor Žárský ◽  
Martin Potocký

The Rho/Rop small GTPase regulatory module is central for initiating exocytotically ACDs (active cortical domains) in plant cell cortex, and a growing array of Rop regulators and effectors are being discovered in plants. Structural membrane phospholipids are important constituents of cells as well as signals, and phospholipid-modifying enzymes are well known effectors of small GTPases. We have shown that PLDs (phospholipases D) and their product, PA (phosphatidic acid), belong to the regulators of the secretory pathway in plants. We have also shown that specific NOXs (NADPH oxidases) producing ROS (reactive oxygen species) are involved in cell growth as exemplified by pollen tubes and root hairs. Most plant cells exhibit several distinct plasma membrane domains (ACDs), established and maintained by endocytosis/exocytosis-driven membrane protein recycling. We proposed recently the concept of a ‘recycling domain’ (RD), uniting the ACD and the connected endosomal recycling compartment (endosome), as a dynamic spatiotemporal entity. We have described a putative GTPase–effector complex exocyst involved in exocytic vesicle tethering in plants. Owing to the multiplicity of its Exo70 subunits, this complex, along with many RabA GTPases (putative recycling endosome organizers), may belong to core regulators of RD organization in plants.


2007 ◽  
Vol 18 (10) ◽  
pp. 3978-3992 ◽  
Author(s):  
Asli Oztan ◽  
Mark Silvis ◽  
Ora A. Weisz ◽  
Neil A. Bradbury ◽  
Shu-Chan Hsu ◽  
...  

The octameric exocyst complex is associated with the junctional complex and recycling endosomes and is proposed to selectively tether cargo vesicles directed toward the basolateral surface of polarized Madin-Darby canine kidney (MDCK) cells. We observed that the exocyst subunits Sec6, Sec8, and Exo70 were localized to early endosomes, transferrin-positive common recycling endosomes, and Rab11a-positive apical recycling endosomes of polarized MDCK cells. Consistent with its localization to multiple populations of endosomes, addition of function-blocking Sec8 antibodies to streptolysin-O–permeabilized cells revealed exocyst requirements for several endocytic pathways including basolateral recycling, apical recycling, and basolateral-to-apical transcytosis. The latter was selectively dependent on interactions between the small GTPase Rab11a and Sec15A and was inhibited by expression of the C-terminus of Sec15A or down-regulation of Sec15A expression using shRNA. These results indicate that the exocyst complex may be a multipurpose regulator of endocytic traffic directed toward both poles of polarized epithelial cells and that transcytotic traffic is likely to require Rab11a-dependent recruitment and modulation of exocyst function, likely through interactions with Sec15A.


1998 ◽  
Vol 9 (7) ◽  
pp. 1725-1739 ◽  
Author(s):  
Dagmar Roth ◽  
Wei Guo ◽  
Peter Novick

The accurate targeting of secretory vesicles to distinct sites on the plasma membrane is necessary to achieve polarized growth and to establish specialized domains at the surface of eukaryotic cells. Members of a protein complex required for exocytosis, the exocyst, have been localized to regions of active secretion in the budding yeastSaccharomyces cerevisiae where they may function to specify sites on the plasma membrane for vesicle docking and fusion. In this study we have addressed the function of one member of the exocyst complex, Sec10p. We have identified two functional domains of Sec10p that act in a dominant-negative manner to inhibit cell growth upon overexpression. Phenotypic and biochemical analysis of the dominant-negative mutants points to a bifunctional role for Sec10p. One domain, consisting of the amino-terminal two-thirds of Sec10p directly interacts with Sec15p, another exocyst component. Overexpression of this domain displaces the full-length Sec10 from the exocyst complex, resulting in a block in exocytosis and an accumulation of secretory vesicles. The carboxy-terminal domain of Sec10p does not interact with other members of the exocyst complex and expression of this domain does not cause a secretory defect. Rather, this mutant results in the formation of elongated cells, suggesting that the second domain of Sec10p is required for morphogenesis, perhaps regulating the reorientation of the secretory pathway from the tip of the emerging daughter cell toward the mother–daughter connection during cell cycle progression.


2018 ◽  
Vol 29 (8) ◽  
pp. 937-947 ◽  
Author(s):  
Catherine E. Gilbert ◽  
Elizabeth Sztul ◽  
Carolyn E. Machamer

ADP-ribosylation factor (ARF) proteins are key regulators of the secretory pathway. ARF1, through interacting with its effectors, regulates protein trafficking by facilitating numerous events at the Golgi. One unique ARF1 effector is golgin-160, which promotes the trafficking of only a specific subset of cargo proteins through the Golgi. While studying this role of golgin-160, we discovered that commonly used cold temperature blocks utilized to synchronize cargo trafficking (20 and 16°C) caused golgin-160 dispersal from Golgi membranes. Here, we show that the loss of golgin-160 localization correlates with a decrease in the levels of activated ARF1, and that golgin-160 dispersal can be prevented by expression of a GTP-locked ARF1 mutant. Overexpression of the ARF1 activator Golgi brefeldin A–resistant guanine nucleotide exchange factor 1 (GBF1) did not prevent golgin-160 dispersal, suggesting that GBF1 may be nonfunctional at lower temperatures. We further discovered that several other Golgi resident proteins had altered localization at lower temperatures, including proteins recruited by ARF-like GTPase 1 (ARL1), a small GTPase that also became dispersed in the cold. Although cold temperature blocks are useful for synchronizing cargo trafficking through the Golgi, our data indicate that caution must be taken when interpreting results from these assays.


2006 ◽  
Vol 174 (2) ◽  
pp. 207-220 ◽  
Author(s):  
Gang Zhang ◽  
Rohini Kashimshetty ◽  
Kwee Eng Ng ◽  
Heng Buck Tan ◽  
Foong May Yeong

Budding yeast chitin synthase 2 (Chs2p), which lays down the primary septum, localizes to the mother–daughter neck in telophase. However, the mechanism underlying the timely neck localization of Chs2p is not known. Recently, it was found that a component of the exocyst complex, Sec3p–green fluorescent protein, arrives at the neck upon mitotic exit. It is not clear whether the neck localization of Chs2p, which is a cargo of the exocyst complex, was similarly regulated by mitotic exit. We report that Chs2p was restrained in the endoplasmic reticulum (ER) during metaphase. Furthermore, mitotic exit was sufficient to cause Chs2p neck localization specifically by triggering the Sec12p-dependent transport of Chs2p out of the ER. Chs2p was “forced” prematurely to the neck by mitotic kinase inactivation at metaphase, with chitin deposition occurring between mother and daughter cells. The dependence of Chs2p exit from the ER followed by its transport to the neck upon mitotic exit ensures that septum formation occurs only after the completion of mitotic events.


Sign in / Sign up

Export Citation Format

Share Document