Mononuclear cobalt(II), nickel(II) and copper(II) complexes: Synthesis, spectral characterization and interaction study with nucleotide by in vitro biochemical analysis

2020 ◽  
Vol 1207 ◽  
pp. 127799 ◽  
Author(s):  
N. Jyothi ◽  
Nirmala Ganji ◽  
Sreenu Daravath ◽  
Shivaraj
2012 ◽  
Vol 18 (S2) ◽  
pp. 110-111
Author(s):  
L. Rothschild ◽  
F. Mwaura ◽  
J. Kabaru ◽  
N. Lobo ◽  
K. Moulton ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


2013 ◽  
Vol 57 (7) ◽  
pp. 3060-3066 ◽  
Author(s):  
S. Flanagan ◽  
K. Bartizal ◽  
S. L. Minassian ◽  
E. Fang ◽  
P. Prokocimer

ABSTRACTTedizolid phosphate is a novel oxazolidinone prodrug whose active moiety, tedizolid, has improved potency against Gram-positive pathogens and pharmacokinetics, allowing once-daily administration. Given linezolid warnings for drug-drug and drug-food interactions mediated by monoamine oxidase (MAO) inhibition, including sporadic serotonergic toxicity, these studies evaluated tedizolid for potential MAO interactions.In vitro, tedizolid and linezolid were reversible inhibitors of human MAO-A and MAO-B; the 50% inhibitory concentration (IC50) for tedizolid was 8.7 μM for MAO-A and 5.7 μM for MAO-B and 46.0 and 2.1 μM, respectively, with linezolid. Tedizolid phosphate was negative in the mouse head twitch model of serotonergic activity. Two randomized placebo-controlled crossover clinical studies assessed the potential of 200 mg/day tedizolid phosphate (at steady state) to enhance pressor responses to coadministered oral tyramine or pseudoephedrine. Sensitivity to tyramine was determined by comparing the concentration of tyramine required to elicit a ≥30-mmHg increase in systolic blood pressure (TYR30) when administered with placebo versus tedizolid phosphate. The geometric mean tyramine sensitivity ratio (placebo TYR30/tedizolid phosphate TYR30) was 1.33; a ratio of ≥2 is considered clinically relevant. In the pseudoephedrine study, mean maximum systolic blood pressure was not significantly different when pseudoephedrine was coadministered with tedizolid phosphate versus placebo. In summary, tedizolid is a weak, reversible inhibitor of MAO-A and MAO-Bin vitro. Provocative testing in humans and animal models failed to uncover significant signals that would suggest potential for hypertensive or serotonergic adverse consequences at the therapeutic dose of tedizolid phosphate. Clinical studies are registered atwww.clinicaltrials.govas NCT01539473 (tyramine interaction study conducted at Covance Clinical Research Center, Evansville, IN) and NCT01577459 (pseudoephedrine interaction study conducted at Vince and Associates Clinical Research, Overland Park, KS).


2017 ◽  
Vol 464 ◽  
pp. 37-48 ◽  
Author(s):  
Said S. Al-Jaroudi ◽  
Muhammad Altaf ◽  
Adam A. Seliman ◽  
Shipra Yadav ◽  
Farukh Arjmand ◽  
...  

Author(s):  
M. Mareel ◽  
E. Bruyneel ◽  
G. De Bruyne ◽  
C. Dragonetti
Keyword(s):  

Author(s):  
Storm N. S. Reid ◽  
Joung-Hyun Park ◽  
Yunsook Kim ◽  
Yi Sub Kwak ◽  
Byeong Hwan Jeon

Exogenous lactate administration has more recently been investigated for its various prophylactic effects. Lactate derived from potential functional foods, such as fermented oyster extract (FO), may emerge as a practical and effective method of consuming exogenous lactate. The current study endeavored to ascertain whether the lactate derived from FO may act on muscle cell biology, and to what extent this may translate into physical fitness improvements. We examined the effects of FO in vitro and in vivo, on mouse C2C12 cells and exercise performance indicators in mice, respectively. In vitro, biochemical analysis was carried out to determine the effects of FO on lactate content and muscle cell energy metabolism, including adenosine triphosphate (ATP) activity. Western blot analysis was also utilized to measure the protein expression of total adenosine monophosphate-activated protein kinase (AMPK), p-AMPK (Thr172), lactate dehydrogenase (LDH), succinate dehydrogenase (SDHA) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in response to FO administration. Three experimental groups were formed: a positive control (PC) treated with 1% horse serum, FO10 treated with 10 μg/mL and FO50 treated with 50 μg/mL. In vivo, the effects of FO supplementation on exercise endurance were measured using the Rota-rod test, and Western blot analysis measured myosin heavy-chain 2 (MYH2) to assess skeletal muscle growth, alongside p-AMPK, total-AMPK, PGC-1α, cytochrome C and UCP3 protein expression. Biochemical analysis was also performed on muscle tissue to measure the changes in concentration of liver lactate, lactate dehydrogenase (LDH), glycogen and citrate. Five groups (n = 10/per group) consisted of a control group (CON), exercise group (Ex), positive control treated with Ex and 500 mg/kg Taurine (Ex-Tau), Ex and 100 mg/kg FO supplementation (Ex-FO100) and Ex and 200 mg/kg FO supplementation (Ex-FO200) orally administered over the 4-week experimental period.FO50 significantly increased PGC-1α expression (p < 0.001), whereas both FO10 and FO50 increased the expression of p-AMPK (p < 0.001), in C2C12 muscle cells, showing increased signaling important for mitochondrial metabolism and biogenesis. Muscle lactate levels were also significantly increased following FO10 (p < 0.05) and FO50 (p < 0.001). In vivo, muscle protein expression of p-AMPK (p < 0.05) and PGC-1α were increased, corroborating our in vitro results. Cytochrome C also significantly increased following FO200 intake. These results suggest that the effects of FO supplementation may manifest in a dose-response manner. FO administration, in vitro, and supplementation, in vivo, both demonstrate a potential for improvements in mitochondrial metabolism and biogenesis, and even for potentiating the adaptive effects of endurance exercise. Mechanistically, lactate may be an important molecule in explaining the aforementioned positive effects of FO.


Sign in / Sign up

Export Citation Format

Share Document