Solvent and catalyst-free synthesis, corrosion protection, thermodynamic, MDS and DFT calculation of two environmentally friendly inhibitors: Bis-phosphonic acids

2020 ◽  
Vol 1222 ◽  
pp. 128813
Author(s):  
Louiza Ouksel ◽  
Riadh Bourzami ◽  
Salah Chafaa ◽  
Nadjib Chafai
2021 ◽  
Author(s):  
M. C. van Leeuwen ◽  
P. M. Gangé ◽  
B. Duran ◽  
F. Prenger

<p>Metallic zinc coatings are well established as cost-effective corrosion protection for steel bridges. The zinc coating acts first as barrier protection, isolating the base steel from corrosive elements, and secondly by cathodic protection, acting as a sacrificial anode to protect the steel should the coating be compromised. Bridge operators can be confronted by disproportional high maintenance costs for bridges in use as removal of (in)organic paint systems with hazardous and toxic compounds require expensive waste disposal and environmental protection measures. Metallic zinc coatings are recognized as environmentally friendly, sustainable, and low maintenance, providing the lowest life cycle cost corrosion protection. Various case studies with bridges protected with metallic zinc coatings in and outside Europe are illustrated.</p>


2015 ◽  
pp. 635-644 ◽  
Author(s):  
Joshua Olusegun Okeniyi ◽  
Olubanke Olujoke Ogunlana ◽  
Oluseyi Ebenezer Ogunlana ◽  
Taiwo Felicia Owoeye ◽  
Elizabeth Toyin Okeniyi

2019 ◽  
Vol 27 (06) ◽  
pp. 1950166
Author(s):  
AYSEL YURT ◽  
ESRA SOLMAZ

Preparation, characterization and application of protective phosphonic acid monolayers formed by 1-Aminohexyl phosphonic acid (AHP), 1,4-butanediphosphonic acid (BDPA), 1-amino-1,3-dimethylbutyl phosphonic acid (ADBP) on copper surface as anticorrosive self-assembled molecular monolayers (SAMs) have been investigated by atomic force microscopy (AFM) analysis, electrochemical impedance spectroscopy (EIS) and in situ electrochemical quartz crystal microbalance (EQCM) techniques. Film formation and growth were monitored by EQCM and the step-by-step construction of monolayer was investigated through measurement of the frequency change, which corresponds to mass change due to the adsorption of molecules. Observed increase in electrode mass suggests that SAMs formed on copper surface by the adsorption of phosphonic acids. Results clearly demonstrate that adsorbed amounts of phosphonic acids were strongly influenced by immersion time and molecular structure. Quantum chemical calculations were performed by semi-empirical PM6 method, in order to explain the relationship between molecular structure and adsorption mechanism. Quantum chemical parameters of phosphonic acids propound that adsorption of molecules on copper surface has a chemical mechanism. Corrosion protection ability of SAMs against the acidic corrosion of copper has been evaluated in 0.1[Formula: see text]M H2SO4 solution. It was found that phosphonic acid SAMs act as protective barrier and the protection efficiencies increased in the following order: [Formula: see text].


2010 ◽  
Vol 496 (1-2) ◽  
pp. 442-448 ◽  
Author(s):  
M. Carboneras ◽  
L.S. Hernández ◽  
J.A. del Valle ◽  
M.C. García-Alonso ◽  
M.L. Escudero

Author(s):  
Rafael Emil Klumpp ◽  
Uyime Donatus ◽  
Rejane Maria Pereira Silva ◽  
Renato Altobelli Antunes ◽  
Caruline de Souza Carvalho Machado ◽  
...  

2018 ◽  
Vol 47 (3) ◽  
pp. 272-278 ◽  
Author(s):  
Amir Khalaj Asadi ◽  
Morteza Ebrahimi ◽  
Mohsen Mohseni

Purpose The purpose of this investigation is to develop a facile method to encapsulate a sunlight-curable silicone-based resin into a melamine–urea–formaldehyde (MUF) shell in the presence of polyvinylpyrrolidone (PVP) as an emulsifier. These microcapsules can be used in self-healing coating formulations. Design/methodology/approach MUF microcapsules containing a sunlight-curable core (methacryloxypropyl-terminated polydimethylsiloxane, MAT-PDMS) have been fabricated by means of in situ polymerisation of an oil-in-water emulsion using PVP as an efficient and environmentally advantageous stabiliser. The effects of agitation rate and PVP concentration on the microencapsulation process have been investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The chemical structure and thermal stability of the microcapsules have been studied using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The solvent resistance of the microcapsules has been determined as well. Findings It has been revealed that the pH of the reaction mixture remained almost constant during the reaction, which simplified the process. It has also been observed that the microencapsulation yield improved and the microcapsules’ surface morphology became smoother when a high PVP content was used. With an increase in stirring rate from 600 to 1,200 rpm, the surface roughness and the average particle size decreased. The mean diameter of the prepared microcapsules ranged from 32.1 to 327.1 µm depending on the synthesis conditions. It was demonstrated that the microcapsules had a high capacity for MAT-PDMS encapsulation (more than 88 Wt.%). The solvent stability of the microcapsules against different polar, semi-polar and non-polar solvents was also evaluated. Research limitations/implications This research is limited to the encapsulation of a hydrophobic and sunlight curable liquid (such as MAT-PDMS) by means of in situ polymerisation of amino resins. Practical implications The results can be used by researchers working on the fabrication of microcapsules for applications such as drugs, electrophoretic inks, electrophoretic displays, intumescent fire-retardant coatings and self-healing materials. Social implications In self-healing coatings, healing agents which can be cured by UV irradiation or sunlight are envisaged attractive because they are catalyst-free, environmentally friendly and relatively inexpensive. PVP is an environmentally friendly emulsifier. The prepared microcapsules can be used in self-healing coatings to help in reducing maintenance costs for buildings and steel structures. Originality/value The novel aspect of this work is the development of a sunlight-curable silicone-based resin that was encapsulated in a MUF shell in the presence of PVP. A simple method was used to fabricate MUF microcapsules containing MAT-PDMS without the need to control pH during the reaction. Conventional methods for the preparation of amino resin microcapsules require an intensive and precise pH control to obtain favourable microcapsules. MAT-PDMS can be cured by sunlight and is catalyst-free, environmentally friendly and relatively inexpensive.


Sign in / Sign up

Export Citation Format

Share Document