Microencapsulation of a sunlight-curable silicon-based resin in the presence of polyvinylpyrrolidone

2018 ◽  
Vol 47 (3) ◽  
pp. 272-278 ◽  
Author(s):  
Amir Khalaj Asadi ◽  
Morteza Ebrahimi ◽  
Mohsen Mohseni

Purpose The purpose of this investigation is to develop a facile method to encapsulate a sunlight-curable silicone-based resin into a melamine–urea–formaldehyde (MUF) shell in the presence of polyvinylpyrrolidone (PVP) as an emulsifier. These microcapsules can be used in self-healing coating formulations. Design/methodology/approach MUF microcapsules containing a sunlight-curable core (methacryloxypropyl-terminated polydimethylsiloxane, MAT-PDMS) have been fabricated by means of in situ polymerisation of an oil-in-water emulsion using PVP as an efficient and environmentally advantageous stabiliser. The effects of agitation rate and PVP concentration on the microencapsulation process have been investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The chemical structure and thermal stability of the microcapsules have been studied using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The solvent resistance of the microcapsules has been determined as well. Findings It has been revealed that the pH of the reaction mixture remained almost constant during the reaction, which simplified the process. It has also been observed that the microencapsulation yield improved and the microcapsules’ surface morphology became smoother when a high PVP content was used. With an increase in stirring rate from 600 to 1,200 rpm, the surface roughness and the average particle size decreased. The mean diameter of the prepared microcapsules ranged from 32.1 to 327.1 µm depending on the synthesis conditions. It was demonstrated that the microcapsules had a high capacity for MAT-PDMS encapsulation (more than 88 Wt.%). The solvent stability of the microcapsules against different polar, semi-polar and non-polar solvents was also evaluated. Research limitations/implications This research is limited to the encapsulation of a hydrophobic and sunlight curable liquid (such as MAT-PDMS) by means of in situ polymerisation of amino resins. Practical implications The results can be used by researchers working on the fabrication of microcapsules for applications such as drugs, electrophoretic inks, electrophoretic displays, intumescent fire-retardant coatings and self-healing materials. Social implications In self-healing coatings, healing agents which can be cured by UV irradiation or sunlight are envisaged attractive because they are catalyst-free, environmentally friendly and relatively inexpensive. PVP is an environmentally friendly emulsifier. The prepared microcapsules can be used in self-healing coatings to help in reducing maintenance costs for buildings and steel structures. Originality/value The novel aspect of this work is the development of a sunlight-curable silicone-based resin that was encapsulated in a MUF shell in the presence of PVP. A simple method was used to fabricate MUF microcapsules containing MAT-PDMS without the need to control pH during the reaction. Conventional methods for the preparation of amino resin microcapsules require an intensive and precise pH control to obtain favourable microcapsules. MAT-PDMS can be cured by sunlight and is catalyst-free, environmentally friendly and relatively inexpensive.

2010 ◽  
Vol 148-149 ◽  
pp. 1031-1035
Author(s):  
Yang Zhao ◽  
Wei Zhang ◽  
Le Ping Liao ◽  
Wu Jun Li ◽  
Yi Xin

With the development of the embedded microcapsule concept for self-healing material, the preparation of microcapsule has been paid more attentions. A new series of microcapsules were prepared by in situ polymerization technology in an oil-in-water emulsion with polyoxymethylene urea (PMU) as shell material and a mixture of epoxy resins as core material. The PMU microcapsules were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electronic microscopy (SEM), particle size analyzer and thermo gravimetric analyzer (TGA) to investigate their chemical structure, surface morphology, size distribution and thermal stability, respectively. The results indicate that PMU microcapsules containing epoxy resins can be synthesized successfully. The optimized reaction parameters were obtained as follow: agitation rate 600 rpm, 60°C water bath, pH=3.5, core material 20ml and hot water dilution by in-situ polymerization. The size is around 116 μm. The rough outer surface of microcapsule is composed of agglomerated PMU nanoparticles. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200°C.


2013 ◽  
Vol 800 ◽  
pp. 471-475
Author(s):  
Wang Rui ◽  
Qian Jin Mao ◽  
Qi Dong Liu ◽  
Xiao Yu Ma ◽  
Su Ping Cui ◽  
...  

The self-healing polymer material which was embedded microcapsules possesses the ability to heal cracks automatically. The microcapsules were synthesized by in-situ polymerization in an oil-in-water emulsion with urea and formaldehyde as the raw shell material,and epoxy resin (E-51)/ xylene as the core material. The impact of stirring speed on the morphology and particle size of synthetic microcapsules were discussed by optical microscopy (OM), scanning electron microscopy (SEM), and Fourier-transform infrared spectrometer (FTIR).Microcapsules of 400~1500 um in diameter were produced by appropriate selection of agitation rate in the range of 300~600 r/min.


2012 ◽  
Vol 217-219 ◽  
pp. 661-665
Author(s):  
Ning Ning Hu ◽  
Hao Han Huang ◽  
Hong Zhi Cui

In this paper, self-healing PUF microcapsules were prepared by in situ polymerization. The test results show that: 1) the ratio of core/wall material can had a significant effect on the average particle size of microcapsules. The ratio happens to be 1.0 to 1.0, best coating, relatively dense surface can be achieved. When the ratio reaches 1.4 to 1.0, the microcapsules have worst coating, particle size, distribution of wide range, and comparatively rough surface. When the ratio is 0.8 to 1.0 or 1.2 to 1.0, preferable coating, uniform particle size and its distribution, as well as smooth and dense surface can be obtained. 2) The faster the stirring speed, the smaller the particle size of microcapsule will be. And the size becomes bigger and varied with the stirring speed decreasing.


2009 ◽  
Vol 79-82 ◽  
pp. 1511-1514
Author(s):  
Hong Feng Wang ◽  
Zhi Qi Wang ◽  
Ai Ping Wang ◽  
Zhi Bin Zhu ◽  
Yan Sheng Yin

An attempt was made to prepare hollow silica microspheres by an oil-in-water emulsion which proposed to use waste polystyrene organic solution as oil phase. Effects of the kinds and amounts of surfactants and the concentration of waste polystyrene solution on the nanosized hollow silica microspheres were studied. The prepared hollow silica microspheres were characterized by TEM, XRD, TG-DTA and particle size distribution analyzer. The experimental results showed that the waste polystyrene organic solution was successfully treated as oil core and the cores could be removed at about 350°C. Meanwhile, the obtained hollow microspheres were amorphous with an average particle size of 40nm. The hollow silica microspheres could be obtained with the selected surfactant.


2021 ◽  
Vol 69 (2) ◽  
pp. 161-170
Author(s):  
Mojtaba G. Mahmoodlu ◽  
Amir Raoof ◽  
Martinus Th. van Genuchten

Abstract This study focuses on the effects of soil textural heterogeneity on longitudinal dispersion under saturation conditions. A series of solute transport experiments were carried out using saturated soil columns packed with two filter sands and two mixtures of these sands, having d50 values of 95, 324, 402, and 480 µm, subjected to four different steady flow rates. Values of the dispersion coefficient (D) were estimated from observed in-situ distributions of calcium chlo-ride, injected as a short nonreactive tracer pulse, at four different locations (11, 18, 25, 36 cm). Analyses of the observed distributions in terms of the standard advection-dispersion equation (ADE) showed that D increased nonlinearly with travel distance and higher Peclet numbers+. The dispersion coefficient of sand sample S1 with its largest average particle size (d 50) was more affected by the average pore-water velocity than sample S4 having the smallest d 50. Results revealed that for a constant velocity, D values of sample S1 were much higher than those of sample S4, which had the smallest d 50. A correlation matrix of parameters controlling the dispersion coefficient showed a relatively strong positive relationship between D and the Peclet number. In contrast, almost no correlation was evident between D and porosity as well as grain size. The results obtained with the four sandy matrices were consistent and proved that the dispersion coefficient depends mainly on the particle size.


2018 ◽  
Vol 8 (5) ◽  
pp. 178-183
Author(s):  
Manish Kumar ◽  
Hemant K. Sharma

The objective of this study is to prepare nanogels were prepared via charged gellan gum. It was prepared by in situ cross linking reaction between two oppositely charged materials by green method without use of chemical cross linking agents. The prepared nanogels were characterized by Dynamic light scattering, scanning electron microscopy, differential scanning calorimetry and X- Ray diffractometry. The prepared formulation had average particle size of 226 nm with polydispersity index of 0.3. The doxorubicin loaded nanogel demonstrated sustained release for 20 h. The prepared nanogels were hemocompatible and cyctocompatible as revealed by hemocompatibility and MTT assay respectively. All results confirmed that these nanogels can be used for cancer treatment. Keywords: Nanogel, Chitosan, Gellan gum, Doxorubicin, Cancer.


2019 ◽  
Vol 16 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Khushdeep Goyal

Purpose This paper aims to evaluate the mechanical properties and slurry erosion behaviour of 10TiO2-Cr2O3 coated turbine steel. Design/methodology/approach Slurry erosion experiments were performed on the coated turbine steel specimens using slurry erosion test rig under accelerated conditions such as rotational speed, average particle size and slurry concentration. Surface roughness tester, Vickers microhardness tester and scanning electron microscope were used to analyse erosion mechanism. Findings Under all experimental conditions, 10TiO2-Cr2O3 coated steel showed better slurry erosion resistance in comparison with Al2O3 coated and uncoated steel specimens. Each experimental condition indicated a significant effect on the erosion rate of both coatings and uncoated steel. The surface analysis of uncoated eroded specimen revealed that plastic deformation, ploughing and deep craters formation were the reasons for mass loss, whereas microchipping, ploughing and microcutting were the reasons for mass loss of coated specimens. Originality/value The present investigation provides novel insight into the comparative slurry erosion performance of high velocity oxy fuel deposited 10TiO2-Cr2O3 and Cr2O3 coatings under various environmental conditions. To form modified powder, 10 Wt.% TiO2 was added to 90 Wt.% Cr2O3.


2005 ◽  
Vol 77 (5) ◽  
pp. 815-826 ◽  
Author(s):  
Jaroslav Stejskal ◽  
Irina Sapurina

Several workers from various institutions in six countries have prepared thin films and colloidal polyaniline dispersions. The films were produced in situ on glass supports during the oxidation of anilinium chloride with ammonium peroxydisulfate in water. The average thickness of the films, assessed by optical absorption, was 125 ± 9 nm, and the conductivity of films was 2.6 ± 0.7 S cm–1. Films prepared in 1 mol l–1 HCl had a similar thickness, 109 ± 10 nm, but a higher conductivity, 18.8 ± 7.1 S cm–1. Colloidal polyaniline particles stabilized with a water-soluble polymer, poly(N-vinylpyrrolidone) [poly(1-vinylpyrrolidin-2-one)], have been prepared by dispersion polymerization. The average particle size, 241 ± 50 nm, and polydispersity, 0.26 ± 0.12, have been determined by dynamic light scattering. The preparation of these two supramolecular polyaniline forms was found to be well reproducible.


ROTOR ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Havid Arifian Rochman ◽  
Arief Ginanjar Dirgantara ◽  
Salahudin Junus ◽  
Imam Sholahuddin ◽  
Aris Zainul Muttaqin

The synthesis of nanoparticles using thermal DC plasma method is a simple method for ease of installation and high efficiency is due to the rate of precursor that can be controlled. Micro-sized aluminum powder is synthesized using thermal DC plasma undergoing a process of evaporation as it passes through high temperature plasma flame, where kemuadian oxidized aluminum particles which evaporates the particles are split and binds with oxygen to form aluminum oxide or also known as alumina (Al2O3). In this experiment, the flow rate of oxygen plasma parameters at 35 SCFH (Standard Cubic Feet per Hour) and 20 amperes flows with precursors rate variation of 1.16 g / min, 3.19 g / min, and 3.5 g / min. Precursors used is 88 micro sized aluminum powder. To determine the morphology of nanoparticles of alumina testing scanning electron microscopy (SEM), the morphology form of nanosphere. Results of the analysis showed that the rate of precursor low causing agglomeration level slightly while the higher rate of precursor agglomeration rate also increased. At the rate of precursor 1.16 g / min, nanoparikel undergo agglomeration with an average particle size of 36.55 nm, and then at a rate of 3.19 gr precursor / mnt an average particle size of 46.49 nm, and at a rate of 3.5 gr / mnt an average particle size of 46.49 nm. The powder nanoparticles were then characterized using X-ray defraksi (XRD) where all alumina nanoparticles were synthesized showed alumina phase that is formed is a phase δ-Al2O3. Keywords: Alumina nanoparticles, DC Thermal Plasma, morphology, precursor rate, nanoparticles size, SEM, XRD.


Sign in / Sign up

Export Citation Format

Share Document