Functionalized nanoclinoptilote as a novel and green catalyst for the synthesis of Mannich bases derived from 4-hydroxy coumarin

2021 ◽  
pp. 131908
Author(s):  
Shabnam Niyazi ◽  
Behjat Pouramiri ◽  
Khadijeh Rabiei
2020 ◽  
Vol 32 (8) ◽  
pp. 2067-2074
Author(s):  
J. Puvithra ◽  
D. Parthiban

Diversely functionalized chromeno-pyrimidine-2,5-dione/thione compounds were synthesized by cyclocondensation of 4-hydroxy coumarin, aldehydes and urea/thiourea using tannic acid as a green catalyst and 1:1 (EtOH:H2O) as a green solvent. Different acids were screened for their catalytic activity of chromeno-pyrimidine-2,5-dione/thione derivatives. Tannic acid (10 mol%) was used as a suitable catalyst with increased catalytic activity. By utilizing this protocol, chromeno-pyrimidine scaffolds were prepared in acceptable to excellent yield without the use of conventional volatile organic solvent and toxic metal catalyst. To our best of knowledge, this is the first report, in which tannic acid is utilized successfully as an eco-safe catalyst for synthesis of fused pyrimidines.


2016 ◽  
Vol 4 (11) ◽  
pp. 892-899
Author(s):  
AbdelKarim M. ◽  
◽  
Wafa O. ◽  
Nafesa A.G. ◽  
Inas O. ◽  
...  

2017 ◽  
Vol 13 (10) ◽  
pp. 764-769 ◽  
Author(s):  
Eramoni Saikia ◽  
Bolin Chetia ◽  
Sankar Bora
Keyword(s):  

2020 ◽  
Vol 17 ◽  
Author(s):  
Sayyed Mostafa Habibi-Khorassani ◽  
Mehdi Shahraki ◽  
Sadegh Talaiefar

Aims and Objective: The main objective of the kinetic investigation of the reaction among ethyl acetoacetate 1, ammoniumacetat 2, dimedone 3 and diverse substitutions of benzaldehyde 4-X, (X= H, NO2, CN, CF3, Cl, CH (CH3)2, CH3, OCH3, OCH3, and OH) for the generation of 4-substituted 1, 4-dihydropyridine derivatives (product 5) was the recognition of the most realistic reaction mechanism. The layout of the reaction mechanism studied kinetically by means of the UV-visible spectrophotometry approach. Materials and Methods: Among the various mechanisms, only mechanism1 (path1) involving 12 steps was recognized as a dominant mechanism (path1). Herein, the reaction between reactants 1 and 2 (kobs= 814.04 M-1 .min-1 ) and also compound 3 and 4-H (kobs= 151.18 M-1 .min-1 ) were the logical possibilities for the first and second fast steps (step1 and step2, respectively). Amongst the remaining steps, only step9 of the dominant mechanism (path1) had substituent groups (X) near the reaction centre that could be directly resonated with it. Results and Discussion: Para electron-withdrawing or donating groups on the compound 4-X increases the rate of the reaction 4 times more or decreases 8.7 times less than the benzaldehyde alone. So, this step is sensitive for monitoring any small or huge changes in the reaction rate. For this reason, step9 is the rate-determining step of the reaction mechanism (path1). Conclusion: The recent result is the agreement with the Hammett description with an excellent dual substituent factor (r = 0.990) and positive value of reaction constant (ρ = +0.9502) which confirmed both the resonance and inductive effects “altogether” contributed on the reaction centre of step9 in the dominant mechanism (path1).


2016 ◽  
Vol 13 (8) ◽  
pp. 734-741 ◽  
Author(s):  
Kaan Kucukoglu ◽  
Halise Inci Gul ◽  
Mustafa Gul ◽  
Rengul Cetin-Atalay ◽  
Yosra Baratli ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 512-517
Author(s):  
Ognyan Ivanov Petrov ◽  
Yordanka Borisova Ivanova ◽  
Mariana Stefanova Gerova ◽  
Georgi Tsvetanov Momekov

Background: Chemotherapy is one of the mainstays of cancer treatment, despite the serious side effects of the clinically available anticancer drugs. In recent years increasing attention has been directed towards novel agents with improved efficacy and selectivity. Compounds with chalcone backbone have been reported to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, etc. It was reported that aminomethylation of hydroxy chalcones to the corresponding Mannich bases increased their cytotoxicity. In this context, our interest has been focused on the design and synthesis of the so-called multi-target molecules, containing two or more pharmacophore fragments. Methods: A series of Mannich bases were synthesized by the reaction between 6-[3-(3,4,5- trimethoxyphenyl)-2-propenoyl]-2(3Н)-benzoxazolone, formaldehyde, and a secondary amine. The structures of the compounds were confirmed by elemental analysis, IR and NMR spectra. The new Mannich bases were evaluated for their in vitro cytotoxicity against a panel of human tumor cell lines, including BV-173, SKW-3, K-562, HL-60, HD-MY-Z and MDA-MB-231. The effects of selected compounds on the cellular levels of glutathione (GSH) were determined. Results: The new compounds 4a-e exhibited concentration-dependent cytotoxic effects at micromolar concentrations in MTT-dye reduction assay against a panel of human tumor cell lines, similar to those of starting chalcone 3. The tested agents led to concentration - dependent depletion of cellular GSH levels, whereby the effects of the chalcone prototype 3 and its Mannich base-derivatives were comparable. Conclusion: The highest chemosensitivity to the tested compounds was observed in BV- 173followed by SKW-3 and HL-60 cell lines.


2020 ◽  
Vol 16 (4) ◽  
pp. 531-543
Author(s):  
Shaheen Faizi ◽  
Tahira Sarfaraz ◽  
Saima Sumbul ◽  
Almas Jabeen ◽  
Sobia A. Halim ◽  
...  

Background: In continuation of our work on Mannich reaction on 8-hydroxyquinoline, fifteen different combinations of aromatic aldehydes and aniline were subjected to Mannich reaction from which twelve products (eight Mannich bases, two imines and two intramolecularly cyclized products with benzofuranone skeleton) were obtained. Among them six compounds (1, 2, 6, 8, 9 and 12) are the new compounds. The structures of the compounds were characterized by UV, IR, MS and 1H NMR. Method: The compounds were tested for the inhibition of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β) at a concentration of 25 µg/mL. The cytokines were produced by THP-1 cells differentiated with PMA for 24hrs and stimulated with LPS for 4 hrs and supernatant were analyzed through ELISA technique. Results and Discussion: Compounds 1-5, 8 and 9 inhibited the production of TNF-α and IL-1β. Compounds 1, 3, and 8 exerted potent inhibitions of TNF-α with 71%, 71%, and 83% inhibition, respectively. Compounds 1 and 8 significantly inhibited the production of IL-1β with 64% and 78% inhibition, respectively. Conclusion: Compounds 1 and 8 significantly inhibited the production of IL-1β with 64% and 78% inhibition, respectively. Notably compound 8 showed the most potent inhibition of these cytokines. Additionally, the effect of compounds on viability of THP-1 cells was also evaluated. Moreover, molecular docking was carried out to study the mechanism of inhibition of TNF-α production.


Sign in / Sign up

Export Citation Format

Share Document