Structures, Atomic Charges, Emission Properties and DFT studies of Biquinoline Derivatives Induced by Protonation of a Nitrogen Atom

2021 ◽  
pp. 131990
Author(s):  
Naokazu Yoshikawa ◽  
Shoko Yamazaki ◽  
Ayaka Nishiyama ◽  
Yuki Yamashita ◽  
Nobuko Kanehisa ◽  
...  
2021 ◽  
pp. 130728
Author(s):  
Naokazu Yoshikawa ◽  
Shoko Yamazaki ◽  
Yuna Kakimoto ◽  
Shiori Eguchi ◽  
Risa Yokoyama ◽  
...  

Synlett ◽  
2017 ◽  
Vol 28 (20) ◽  
pp. 2765-2768 ◽  
Author(s):  
Tahani Aeyad ◽  
Jason Williams ◽  
Anthony Meijer ◽  
Iain Coldham

Preparation of 2,2-disubstituted azepanes was accomplished from N-tert-butoxy(N-Boc)-2-phenylazepane by treatment with butyllithium then electrophilic quench. The lithiation was followed by in situ ReactIR spectroscopy and the rate of rotation of the carbamate was determined by variable temperature (VT)-NMR spectroscopy and by DFT studies. Most electrophiles add α to the nitrogen atom but cyanoformates and chloroformates gave ortho-substituted products. Cyclic carbamates were formed from an aldehyde or ketone electrophile. Kinetic resolution with sparteine was only poorly selective. Removal of the Boc group promoted cyclization to a homoindolizidine or an isoindolinone.


2008 ◽  
Vol 128 (10) ◽  
pp. 615-618 ◽  
Author(s):  
Takeshi Kitajima ◽  
Akihiro Kubota ◽  
Toshiki Nakano

2020 ◽  
Author(s):  
Rui Guo ◽  
Xiaotian Qi ◽  
Hengye Xiang ◽  
Paul Geaneoates ◽  
Ruihan Wang ◽  
...  

Vinyl fluorides play an important role in drug development as they serve as bioisosteres for peptide bonds and are found in a range of biologically active molecules. The discovery of safe, general and practical procedures to prepare vinyl fluorides remains an important goal and challenge for synthetic chemistry. Here we introduce an inexpensive and easily-handled reagent and report simple, scalable, and metal-free protocols for the regioselective and stereodivergent hydrofluorination of alkynes to access both the E and Z isomers of vinyl fluorides. These conditions were suitable for a diverse collection of alkynes, including several highly-functionalized pharmaceutical derivatives. Mechanistic and DFT studies support C–F bond formation through a vinyl cation intermediate, with the (E)- and (Z)-hydrofluorination products forming under kinetic and thermodynamic control, respectively.<br>


2019 ◽  
Author(s):  
Otome Okoromoba ◽  
Eun Sil Jang ◽  
Claire McMullin ◽  
Thomas Cundari ◽  
Timothy H. Warren

<p>α-substituted ketones are important chemical targets as synthetic intermediates as well as functionalities in in natural products and pharmaceuticals. We report the sp<sup>3</sup> C-H α-acetylation of sp<sup>3</sup> C-H substrates R-H with arylmethyl ketones ArC(O)Me to provide α-alkylated ketones ArC(O)CH<sub>2</sub>R at RT with <sup>t</sup>BuOO<sup>t</sup>Bu as oxidant via copper(I) β-diketiminato catalysts. Proceeding via alkyl radicals R•, this method enables α-substitution with bulky substituents without competing elimination that occurs in more traditional alkylation reactions between enolates and alkyl electrophiles. DFT studies suggest the intermediacy of copper(II) enolates [Cu<sup>II</sup>](CH<sub>2</sub>C(O)Ar) that capture alkyl radicals R• to give R-CH<sub>2</sub>C(O)Ar under competing dimerization of the copper(II) enolate to give the 1,4-diketone ArC(O)CH<sub>2</sub>CH<sub>2</sub>C(O)Ar.</p>


2019 ◽  
Author(s):  
Otome Okoromoba ◽  
Eun Sil Jang ◽  
Claire McMullin ◽  
Thomas Cundari ◽  
Timothy H. Warren

<p>α-substituted ketones are important chemical targets as synthetic intermediates as well as functionalities in in natural products and pharmaceuticals. We report the sp<sup>3</sup> C-H α-acetylation of sp<sup>3</sup> C-H substrates R-H with arylmethyl ketones ArC(O)Me to provide α-alkylated ketones ArC(O)CH<sub>2</sub>R at RT with <sup>t</sup>BuOO<sup>t</sup>Bu as oxidant via copper(I) β-diketiminato catalysts. Proceeding via alkyl radicals R•, this method enables α-substitution with bulky substituents without competing elimination that occurs in more traditional alkylation reactions between enolates and alkyl electrophiles. DFT studies suggest the intermediacy of copper(II) enolates [Cu<sup>II</sup>](CH<sub>2</sub>C(O)Ar) that capture alkyl radicals R• to give R-CH<sub>2</sub>C(O)Ar under competing dimerization of the copper(II) enolate to give the 1,4-diketone ArC(O)CH<sub>2</sub>CH<sub>2</sub>C(O)Ar.</p>


2018 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Alejandro Lara ◽  
David L. Mobley ◽  
Toon Vestraelen ◽  
Adelio R Matamala ◽  
...  

<div>Computer simulations of bio-molecular systems often use force fields, which are combinations of simple empirical atom-based functions to describe the molecular interactions. Even though polarizable force fields give a more detailed description of intermolecular interactions, nonpolarizable force fields, developed several decades ago, are often still preferred because of their reduced computation cost. Electrostatic interactions play a major role in bio-molecular systems and are therein described by atomic point charges.</div><div>In this work, we address the performance of different atomic charges to reproduce experimental hydration free energies in the FreeSolv database in combination with the GAFF force field. Atomic charges were calculated by two atoms-in-molecules approaches, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS). To account for polarization effects, the charges were derived from the solute's electron density computed with an implicit solvent model and the energy required to polarize the solute was added to the free energy cycle. The calculated hydration free energies were analyzed with an error model, revealing systematic errors associated with specific functional groups or chemical elements. The best agreement with the experimental data is observed for the MBIS atomic charge method, including the solvent polarization, with a root mean square error of 2.0 kcal mol<sup>-1</sup> for the 613 organic molecules studied. The largest deviation was observed for phosphor-containing molecules and the molecules with amide, ester and amine functional groups.</div>


Sign in / Sign up

Export Citation Format

Share Document