scholarly journals Comet assay evaluation of six chemicals of known genotoxic potential in rats

Author(s):  
Cheryl A. Hobbs ◽  
Leslie Recio ◽  
Michael Streicker ◽  
Molly H. Boyle ◽  
Jin Tanaka ◽  
...  
2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Satomi Kawaguchi ◽  
Takanori Nakamura ◽  
Ayumi Yamamoto ◽  
Gisho Honda ◽  
Yu F. Sasaki

Although the Comet assay, a procedure for quantitating DNA damage in mammalian cells, is considered sensitive, it has never been ascertained that its sensitivity is higher than the sensitivity of other genotoxicity assays in mammalian cells. To determine whether the power of the Comet assay to detect a low level of genotoxic potential is superior to those of other genotoxicity assays in mammalian cells, we compared the results of Comet assay with those of micronucleus test (MN test). WTK1 human lymphoblastoid cells were exposed to methyl nitrosourea (MNU), ethyl nitrosourea (ENU), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), bleomycin (BLM), or UVC. In Comet assay, cells were exposed to each mutagen with (Comet assay/araC) and without (Comet assay) DNA repair inhibitors (araC and hydroxyurea). Furthermore, acellular Comet assay (acellular assay) was performed to determine how single-strand breaks (SSBs) as the initial damage contributes to DNA migration and/or to micronucleus formation. The lowest genotoxic dose (LGD), which is defined as the lowest dose at which each mutagen causes a positive response on each genotoxicity assay, was used to compare the power of the Comet assay to detect a low level of genotoxic potential and that of MN test; that is, a low LGD indicates a high power. Results are summarized as follows: (1) for all mutagens studied, LGDs were MN test ≦ Comet assay; (2) except for BLM, LGDs were Comet assay/araC ≦ MN test; (3) except for UVC and MNU, LGDs were acellular assay ≦ Comet assay/araC ≦ MN test ≦ Comet assay. The following is suggested by the present findings: (1) LGD in the Comet assay is higher than that in MN test, which suggests that the power of the MN test to detect a low level of genotoxic potential is superior to that of the Comet assay; (2) for the studied mutagens, all assays were able to detect all mutagens correctly, which suggests that the sensitivity of the Comet assay and that of the MN test were exactly identical; (3) the power of the Comet assay to detect a low level of genotoxic potential can be elevated to a level higher than that of MN test by using DNA resynthesis inhibitors, such as araC and HU.


2016 ◽  
Vol 540 ◽  
pp. 377-385 ◽  
Author(s):  
Stoimir Kolarević ◽  
Margareta Kračun-Kolarević ◽  
Jovana Kostić ◽  
Jaroslav Slobodnik ◽  
Igor Liška ◽  
...  

2010 ◽  
Vol 196 ◽  
pp. S162-S163
Author(s):  
O.K. Ulutaş ◽  
E. Durmaz ◽  
R. Güler ◽  
İ. Gürbüz ◽  
İ. Çok

2010 ◽  
Vol 30 (1) ◽  
pp. 80-84 ◽  
Author(s):  
Md. Kawser Ahmed ◽  
Elora Parvin ◽  
Mohammad Arif ◽  
Mosammat Salma Akter ◽  
Mohammad Shahneawz Khan ◽  
...  

2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Haruna Tahara ◽  
Yoshinori Yamagiwa ◽  
Yu Haranosono ◽  
Masaaki Kurata

Abstract Background The in vivo comet assay is used to evaluate the genotoxic potential of compounds by detecting DNA strand breaks in cells isolated from animal tissue. The comet assay of hepatocytes is well established; however, the levels of systemic drug exposure following systemic administration are often insufficient to evaluate the genotoxic potential of compounds on the ocular surface following ocular instillation. To investigate the possibility of using the comet assay as a genotoxic evaluation tool for the ocular surface, we performed this assay on the corneal epithelial cells of rabbit eyes 2 h after the single ocular instillation of five genotoxic compounds, namely ethidium bromide, 1,1′-dimethyl-4,4′-bipyridinium dichloride (paraquat), methyl methanesulfonate (MMS), acrylamide, and 4-nitroquinoline 1-oxide (4-NQO). Results The mean % tail DNA, as an indicator of DNA damage, in the corneal epithelial cells treated with ethidium bromide, MMS, and 4-NQO exhibited statistically significant increases compared with those in the negative controls (saline or 5 % dimethyl sulfoxide in saline). However, paraquat and acrylamide did not increase the mean % tail DNA, presumably because of the high antioxidant levels and low cytochrome P450 levels present in the corneal epithelium, respectively. Conclusions The comet assay was able to detect genotoxic potential on the ocular surface following ocular instillation with genotoxic compounds. The study findings indicate that the in vivo comet assay may provide a useful tool for assessing the genotoxicity of compounds topically administrated on the ocular surface under mimicking clinical condition.


Sign in / Sign up

Export Citation Format

Share Document