Effect of copper and nickel coating on short steel fiber reinforcement on microstructure and mechanical properties of aluminium matrix composites

2008 ◽  
Vol 492 (1-2) ◽  
pp. 346-352 ◽  
Author(s):  
D. Mandal ◽  
B.K. Dutta ◽  
S.C. Panigrahi
2016 ◽  
Vol 117 ◽  
pp. 127-133 ◽  
Author(s):  
Lidia Lityńska-Dobrzyńska ◽  
Mikołaj Mitka ◽  
Anna Góral ◽  
Katarzyna Stan-Głowińska ◽  
Jan Dutkiewicz

Author(s):  
Md. Rahat Hossain ◽  
Md. Hasan Ali ◽  
Md. Al Amin ◽  
Md. Golam Kibria ◽  
Md. Shafiul Ferdous

Aluminium matrix composites (AMCs) used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs) such as aluminium alloy (A356) reinforced with rice husk ash particles (RHA) are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356) reinforced with various amounts of (2%, 4%, and 6%) rice husk ash (RHA) particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA) and aluminium matrix composites (AMCs). In future, the optimum percentages of rice husk ash (RHA) to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM) will be applied for further investigation.


2004 ◽  
Vol 13 (1) ◽  
pp. 096369350401300 ◽  
Author(s):  
D. Busquets-Mataix ◽  
N. Martvnez ◽  
M.D. Salvador ◽  
V. Amigσ

Mechanical properties and tribological behaviour of AA6061 and AA7015 aluminium matrix composites reinforced with Ti3Al intermetallics have been studied. Processing of the composites consisted of a combination of powder metallurgy and extrusion techniques. High tensile strength was attained on both alloys, although composites did not improve these properties. Also ductility was impaired on composites, but values above 10% were obtained in every case. Regarding friction coefficient, all composites showed a lower value with respect to base alloys, being lower as the amount of reinforcement increased. Wear behaviour of composites was improved.


Sign in / Sign up

Export Citation Format

Share Document