Radiation-induced segregation in austenitic stainless steel type 304: Effect of high fraction of twin boundaries

2011 ◽  
Vol 528 (25-26) ◽  
pp. 7541-7551 ◽  
Author(s):  
Parag Ahmedabadi ◽  
V. Kain ◽  
K. Arora ◽  
I. Samajdar ◽  
S.C. Sharma ◽  
...  
2015 ◽  
Vol 21 (4) ◽  
Author(s):  
Roland Tolulope LOTO ◽  
Cleophas Akintoye LOTO ◽  
Patricia Abimbola POPOOLA ◽  
Tatiana FEDOTOVA

2006 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
M.O.S Aritonang ◽  
Iqbal Fahri

Tujuan penelitian ini adalah untuk mengetahui laju korosi austenitik tipe stainless steel 304 attack nitric acid 65% dengan austenitic stainless steel tipe 304 serang nitric acid 85% untuk kepentingan konstruksi. Penelitian ini dilakukan di Balai Penelitian Bahan Kimia Departemen Perindustrian DKI Jakarta. Metodologi yang digunakan dalam penelitian ini adalah eksperimen dengan dua jenis perlakuan. Yaitu; kelompok pertama adalah austenitic stainless steel tipe 304 serangan asam nitrat 65% dan kelompok kedua adalah stainless steel tipe austenitic 304 menyerang asam nitrat 85%. Jumlah semua instrumen yang diuji adalah 10 buah dari dua jenis perawatan. Untuk mengetahui pengaruh korosi terhadap sifat mekanik austenitic stainless steel tipe 304 khususnya kekuatan tarik, dilakukan pengujian kekuatan terhadap dua grup austenitic stanless steel type 304 attack nitric acid. Jadilah sisi, dilaksanakan juga pengujian kekuatan terhadap satu kelompok austenitic stainless steel tipe 304 sebagai kelompok kontrol. Berdasarkan penelitian, temuan menunjukkan bahwa austenitic stainless steel tipe 304 menyerang asam nitrat 65% memiliki laju korosi 3,751 mm / tahun pada rata-rata dan austenitic stainless steel tipe 304 serangan asam nitrat 85% memiliki laju korosi 6,404 mm / tahun pada rata-rata . Data dari penelitian diuji dengan uji rata - rata dua ekor (uji - t), uji satu ekor, ekor kiri dengan alfa = 0,01, dan dari analisis dapat diperoleh thitung = - 11,53, nilainya adalah lebih kecil dari tTable = -2,90 yang H0 di area penolakan. Kualitas austenitik dari baja tahan karat tipe 304 terhadap serangan korosi, diikuti juga oleh kekuatan tarik tarik austenitic stainless steel tipe 304. Sebelum korosi austenitic stainless steel memiliki kekuatan tarik 60.107 kgf / mm2. Setelah korosi dengan asam nitrat 65% kekuatan tarik austenitic stainless steel tipe 304 menjadi 57,329 kgf / mm2. Demikian lagi, setelah korosi dengan asam nitrat daya tarik 85% baja tahan austenitik tipe 304 menjadi 55.349 kgf / mm2.


2011 ◽  
Vol 416 (3) ◽  
pp. 335-344 ◽  
Author(s):  
Parag Ahmedabadi ◽  
V. Kain ◽  
K. Arora ◽  
I. Samajdar ◽  
S.C. Sharma ◽  
...  

Alloy Digest ◽  
2000 ◽  
Vol 49 (5) ◽  

Abstract RAM 304/L is a machining quality version of standard austenitic stainless steel type 304/304L with dual certification possible when both the lower carbon limit and higher strength are met. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-789. Producer or source: Rolled Alloys Inc.


2006 ◽  
Vol 116-117 ◽  
pp. 681-685 ◽  
Author(s):  
Jing Yuan Li ◽  
Sumio Sugiyama ◽  
Jun Yanagimoto

Thixoforming or Semi-Solid Metal Forming offers many advantages in comparison with casting and conventional forging. The purpose of the present study is to provide the basic microstructure and deformation data for austenitic and ferritic stainless steel under mushy state. As well known, the stainless steels solidify in different modes according to the different chemical compositions. In this paper, microstructural evolution of austenitic stainless steel type 304 which solidifies in FA mode ( L → L +δ → L +δ +γ →δ +γ →γ ),austenitic stainless steel type 310S which solidifies in A mode ( L → L +γ →γ ), and ferritic stainless steel type 430 which solidifies in F mode ( L → L +δ →δ )are investigated during partial remelting by way of SIMA (Strain Induced Melted Activation). The results show that A and F mode of stainless steels melt directly at the grain boundary without phase transformation during reheating. A banded structure, originating from the primary dendritic segregation of the original ingots, is observed in type 310S steel during further heating. On the other hand, a perfect globular and insegregative two-phase semi-solid structure L +δ can be obtained while heated beyond the banded three-phase L +δ +γ semi-solid state in FA mode austenitic stainless steel type 304. This spheroidization can be attributed to the peritectic reaction occurred in the L +δ +γ semi-solid state. In addition, simple compression tests of these alloys in semi-solid state for varied combination of deformation rate and deformation temperature are conducted to examine the deformation behavior of stainless steel. Flow stress curves exhibit abrupt change in various alloys, even though in the same alloy such as type 304, various flow stresses are observed according to the difference in inner microstructure or morphology. Stress of type 310S steel shows the most reduction as the deformation temperature increasing at the same strain rate condition. The Liquid is centralized to periphery by the compression force in all deformed test pieces. Fracture, observed in all alloys except type 304 steel in globular L +δ semi-solid state, should be resulted from the lack of liquid in L +δ +γ state of type 304 steel and solidification crack in type 310S and type 430 steel. Deformation of solid particles occurs only in L +δ +γ state of type 304 steel. Last in this paper, various deformation mechanisms are proposed for various microstructures.


Sign in / Sign up

Export Citation Format

Share Document