Microstructure and mechanical properties of C–Mn–Al–Si hot-rolled TRIP steels with and without Nb based on dynamic transformation

2012 ◽  
Vol 536 ◽  
pp. 265-268 ◽  
Author(s):  
B. Fu ◽  
W.Y. Yang ◽  
M.Y. Lu ◽  
Q. Feng ◽  
L.F. Li ◽  
...  
Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2242 ◽  
Author(s):  
Chunquan Liu ◽  
Qichun Peng ◽  
Zhengliang Xue ◽  
Shijie Wang ◽  
Chengwei Yang

This study investigated the microstructure and mechanical properties of hot-rolled and cold-rolled medium-Mn transformation-induced plasticity (TRIP) steel. The experimental steel, processed by quenching and tempering (Q & T) heat treatment, exhibited excellent mechanical properties for hot-rolled and Q & T steels (strength of 1050–1130 MPa and ductility of 16–34%), as well as for cold-rolled and Q & T steels (strength of 878–1373 MPa and ductility of 18–40%). The mechanical properties obtained after isothermal holding at 775 °C for one hour for cold-rolled/Q & T steel were superior to that of hot-rolled/Q & T steel. Excellent mechanical properties were attributed to the large amount of retained austenite, which produced a discontinuous TRIP effect. Additionally, the differences in mechanical properties correlated with the morphology, stability and content of retained austenite. The cold-rolled sample, quenched from 650 °C (CR 650°C) had extensive TRIP effects in the middle and late stages of the deformation, leading to better mechanical properties. The fracture modes of the hot-rolled sample, quenched from 650 °C, and the cold-rolled sample quenched from 650 °C, were ductile fractures, resulting in excellent ductility.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 476
Author(s):  
Sayed Amer ◽  
Ruslan Barkov ◽  
Andrey Pozdniakov

Microstructure of Al-Cu-Yb and Al-Cu-Gd alloys at casting, hot-rolled -cold-rolled and annealed state were observed; the effect of annealing on the microstructure was studied, as were the mechanical properties and forming properties of the alloys, and the mechanism of action was explored. Analysis of the solidification process showed that the primary Al solidification is followed by the eutectic reaction. The second Al8Cu4Yb and Al8Cu4Gd phases play an important role as recrystallization inhibitor. The Al3Yb or (Al, Cu)17Yb2 phase inclusions are present in the Al-Cu-Yb alloy at the boundary between the eutectic and aluminum dendrites. The recrystallization starting temperature of the alloys is in the range of 250–350 °C after rolling with previous quenching at 590 and 605 °C for Al-Cu-Yb and Al-Cu-Gd, respectively. The hardness and tensile properties of Al-Cu-Yb and Al-Cu-Gd as-rolled alloys are reduced by increasing the annealing temperature and time. The as-rolled alloys have high mechanical properties: YS = 303 MPa, UTS = 327 MPa and El. = 3.2% for Al-Cu-Yb alloy, while YS = 290 MPa, UTS = 315 MPa and El. = 2.1% for Al-Cu-Gd alloy.


2011 ◽  
Vol 239-242 ◽  
pp. 1092-1095
Author(s):  
Xu Tao Gao ◽  
Ai Min Zhao ◽  
Zheng Zhi Zhao ◽  
Ming Ming Zhang ◽  
Di Tang

By means of optical microscopy(OM), scanning electron microscopy(SEM),X-ray diffraction(XRD),And tensile test, Mechanical Properties of hot rolled transformation -induced plasticity (TRIP) steels which were prepared through three different coiling temperature was investigated. Result reveals that the formability index of the experimental steel descends when the coiling temperature becomes low. Different coiling temperature has greater impact on retained austenite. Amount and carbon content of retained austenite in the experimental steel get less with lower coiling temperature.


Sign in / Sign up

Export Citation Format

Share Document