scholarly journals Microstructure and Mechanical Properties of Novel Quasibinary Al-Cu-Yb and Al-Cu-Gd Alloys

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 476
Author(s):  
Sayed Amer ◽  
Ruslan Barkov ◽  
Andrey Pozdniakov

Microstructure of Al-Cu-Yb and Al-Cu-Gd alloys at casting, hot-rolled -cold-rolled and annealed state were observed; the effect of annealing on the microstructure was studied, as were the mechanical properties and forming properties of the alloys, and the mechanism of action was explored. Analysis of the solidification process showed that the primary Al solidification is followed by the eutectic reaction. The second Al8Cu4Yb and Al8Cu4Gd phases play an important role as recrystallization inhibitor. The Al3Yb or (Al, Cu)17Yb2 phase inclusions are present in the Al-Cu-Yb alloy at the boundary between the eutectic and aluminum dendrites. The recrystallization starting temperature of the alloys is in the range of 250–350 °C after rolling with previous quenching at 590 and 605 °C for Al-Cu-Yb and Al-Cu-Gd, respectively. The hardness and tensile properties of Al-Cu-Yb and Al-Cu-Gd as-rolled alloys are reduced by increasing the annealing temperature and time. The as-rolled alloys have high mechanical properties: YS = 303 MPa, UTS = 327 MPa and El. = 3.2% for Al-Cu-Yb alloy, while YS = 290 MPa, UTS = 315 MPa and El. = 2.1% for Al-Cu-Gd alloy.

2018 ◽  
Vol 11 (05) ◽  
pp. 1850033 ◽  
Author(s):  
Shuanglei Li ◽  
Tae-Hyun Nam

In this study, the effect of annealing temperature on microstructure and mechanical properties of a Ti–18Zr–12.5Nb–2Sn (at.%) alloy was investigated by using optical microscopy (OM), X-ray diffraction (XRD) measurement and tensile test. The cold-rolled plate was annealed at temperatures between 773[Formula: see text]K and 1173[Formula: see text]K. Recrystallization occurred in the specimen annealed at 873[Formula: see text]K. Grain size increased from 8[Formula: see text][Formula: see text]m to 80[Formula: see text][Formula: see text]m with increasing temperature from 873[Formula: see text]K to 1173[Formula: see text]K. The ultimate tensile strength decreased from 1590[Formula: see text]MPa to 806[Formula: see text]MPa with increasing annealing temperature from 773[Formula: see text]K to 973[Formula: see text]K, and then showed similar value in the specimens annealed at temperatures from 973[Formula: see text]K to 1173[Formula: see text]K. The fracture strain increased from 3.8% to 41.0% with increasing annealing temperature from 773[Formula: see text]K to 1173[Formula: see text]K due to the recovery and recrystallization. The recovery strain increased with increasing of annealing temperature attributed to the evolution of recrystallization texture.


2016 ◽  
Vol 879 ◽  
pp. 483-488
Author(s):  
Ekaterina Bocharova ◽  
Kirill Khlopkov ◽  
Roland Sebald

Dual-phase steels are the most important AHSS grades for automotive applications. Microalloying elements such as Ti, Nb or B are widely used to improve the strength of dual-phase steels. Thus, understanding the influence of these elements on the microstructure and mechanical properties of dual-phase steels along the processing route is critical for the development of new steel grades. In this work, different microalloying elements were investigated, separately or in combination. The influences of the different elements on the microstructure and mechanical properties of dual-phase steels in the hot-rolled condition and after annealing of cold-rolled material. Dilatometer measurements were performed to investigate phase transformation during a typical continuous annealing treatment of dual-phase steel after cold rolling. It was shown that, for example, Ti has a strong influence on the mechanical properties of hot-rolled material while its influence on annealed materials after cold rolling was relatively small. Conversely, B had a strong influence on cold-rolled materials but an insignificant influence on hot-rolled materials.


2016 ◽  
Vol 879 ◽  
pp. 2144-2149
Author(s):  
Kai Zhou ◽  
Ying Zou ◽  
Yun Bo Xu ◽  
Zhi Ping Hu ◽  
Xiao Dong Tan ◽  
...  

Continuous annealing processes were applied to a 980MPa cold-rolled dual phase steel (Fe-0.11C-2.5Mn-0.5Si-0.4Cr) and the effect of continuous annealing temperature on microstructure and mechanical properties was investigated. The microstructures were observed and analyzed by optical microscopy (OM), scanning electron microscopy (SEM), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM). The mechanical properties were measured by uniaxial tensile tests. The results revealed that the steel is composed of a certain percentage of ferrite, martensite and perhaps a small amount of retained austenite as well. As the annealing temperature increased, the volume fraction of martensite reached to 67% from 48% and the morphology translated to lath-like from M/A island. As a consequence, the ultimate tensile strength (UTS) and yield strength had a moderate increase from 1070 to 1110 MPa and 580 to 640 MPa, respectively. Meanwhile, the fracture elongation rose to the maximum 12.6% firstly and then decreased to about 9.0%. The optimizing mechanical properties with UTS up to 1090 MPa, yield ratio about 0.54 and fracture elongation about 13% could be obtained at the annealing temperature of 790°C for 120s.


2013 ◽  
Vol 395-396 ◽  
pp. 313-317 ◽  
Author(s):  
Hong Bin Wang ◽  
Rui Xing ◽  
Yi Yao Yu ◽  
Ji Guang Li ◽  
Ji Hong Yang ◽  
...  

The microstructure and mechanical properties of the continuous annealing DP590 steel produced by a cold rolled plant were studied by utilizing a Gleeble thermal simulator tested machine. The results show that, increasing annealing temperature can not effectively improve the martensite content in the steel and annealing temperature be set at 780 °C and 800 °C is rational. Martensite decomposition at high overaging temperature will decrease tensile strength of the samples. As the overaging temperature sets at 250 °C ~ 300 °C, the samples could achieve tensile strength more than 600 MPa, which meet the requirements of DP590.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Qiang Wu ◽  
Kunning Fu ◽  
Ruizhi Wu ◽  
Jinghuai Zhang ◽  
Legan Hou ◽  
...  

The as-cast Mg-14Li-1Zn alloy was hot rolled at different temperatures with the reduction of 50%, followed by cold rolling with the reduction of 80%. The effects of the hot rolling temperature on the microstructure and mechanical properties of the final specimens were investigated. The results show that the higher rolling temperature brings about a more homogeneous microstructure, which is favorable for the subsequent cold rolling. When the hot rolling temperature is 300°C, the final specimen possesses the highest tensile strength and hardness of 238 MPa and 67.7 HV, respectively. When the hot rolling temperature is 200°C, the final specimen possesses the highest elongation of 24.6%.


2016 ◽  
Vol 879 ◽  
pp. 1420-1425
Author(s):  
Artem Arlazarov ◽  
Melanie Ollat ◽  
Jean Philippe Masse ◽  
Magalie Bouzat

Q&P annealing cycles with different partitioning conditions were performed on cold rolled 0.2C-2.22Mn-1.44Si-0.21Cr steel. An important influence of partitioning temperature and time on the evolution of retained austenite fraction was shown through the saturation magnetization measurements. Such effect of partitioning conditions was also observed on the evolution of mechanical behavior. The evolution of microstructure and mechanical properties with the partitioning conditions was analyzed. Mechanical stability of retained austenite as a function of partitioning time was also assessed. Finally, modeling of the obtained stress-strain curves was performed and some explanations of the observed tendencies between partitioning conditions and tensile properties were proposed.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2242 ◽  
Author(s):  
Chunquan Liu ◽  
Qichun Peng ◽  
Zhengliang Xue ◽  
Shijie Wang ◽  
Chengwei Yang

This study investigated the microstructure and mechanical properties of hot-rolled and cold-rolled medium-Mn transformation-induced plasticity (TRIP) steel. The experimental steel, processed by quenching and tempering (Q & T) heat treatment, exhibited excellent mechanical properties for hot-rolled and Q & T steels (strength of 1050–1130 MPa and ductility of 16–34%), as well as for cold-rolled and Q & T steels (strength of 878–1373 MPa and ductility of 18–40%). The mechanical properties obtained after isothermal holding at 775 °C for one hour for cold-rolled/Q & T steel were superior to that of hot-rolled/Q & T steel. Excellent mechanical properties were attributed to the large amount of retained austenite, which produced a discontinuous TRIP effect. Additionally, the differences in mechanical properties correlated with the morphology, stability and content of retained austenite. The cold-rolled sample, quenched from 650 °C (CR 650°C) had extensive TRIP effects in the middle and late stages of the deformation, leading to better mechanical properties. The fracture modes of the hot-rolled sample, quenched from 650 °C, and the cold-rolled sample quenched from 650 °C, were ductile fractures, resulting in excellent ductility.


2011 ◽  
Vol 1295 ◽  
Author(s):  
L. Hu ◽  
S. Bogner ◽  
W. Hu ◽  
A. Bührig-Polaczek ◽  
G. Gottstein

ABSTRACTComposites with a eutectic composition NiAl-9at.%Mo were produced by controlled directional solidification (DS) so that refractory metallic Mo fibers were precipitated and aligned in the NiAl matrix parallel to the solidification direction through the eutectic reaction. Such NiAl composites can be used for structural applications at high temperatures (> 1000 °C), for example as blade material for modern gas turbines. The microstructure of the composites was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The interface fine structure between Mo fiber and NiAl matrix was studied by high resolution TEM (HRTEM). Mechanical properties were measured by tensile tests at 700 °C and 1100 °C. Accordingly, a correlation of the DS parameters, microstructure and mechanical properties was established.


Sign in / Sign up

Export Citation Format

Share Document