Effects of Sm on the grain refinement, microstructures and mechanical properties of AZ31 magnesium alloy

2015 ◽  
Vol 620 ◽  
pp. 89-96 ◽  
Author(s):  
Ming Sun ◽  
Xiaoyu Hu ◽  
Liming Peng ◽  
Penghuai Fu ◽  
Yinghong Peng
Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


2016 ◽  
Vol 35 (10) ◽  
pp. 967-972
Author(s):  
H.J. Hu ◽  
Y.Y. Li ◽  
X. Wang ◽  
D.F. Zhang ◽  
M.B. Yang

AbstractIn this paper, the effects of extrusion–shear (ES) on the microstructures and mechanical properties of AZ31 magnesium alloy has been studied, which has been achieved by conducting a lot of experiments and tests, including ES process, direct extrusion with different billet temperatures, microstructure analysis, hardness test, tensile & compression tests. The results show that the ES-processed rods has higher strengths (yield strength and tensile strength) than the direct extrusion ones with the same billet temperature, which contributed to their lower averaged grain size obtained from microstructure analysis according to Hall–Petch relation. Besides, the hardness of ES-processed AZ31 magnesium alloy decreases with the increasing of billet temperature. By comparing the two processes, it can be seen that the ES process could refine the microstructure and improve the mechanical properties of magnesium alloy.


2012 ◽  
Vol 57 (3) ◽  
pp. 711-717 ◽  
Author(s):  
K. Bryła ◽  
J. Dutkiewicz ◽  
L. Litynska-Dobrzynska ◽  
L.L. Rokhlin ◽  
P. Kurtyka

The aim of this work was to investigate the influence of the number of equal channel angular pressing (ECAP) passes on the microstructure and mechanical properties of AZ31 magnesium alloy. The microstructure after two and four passes of ECAP at 423 and 523 K was investigated by means of optical and transmission electron microscopy. The mechanical properties were carried out using Vickers microhardness measurements and compression test. The grain refinement in AZ31 alloy was obtained using ECAP routes down to 1,5 μm at 423 K. Processes of dynamic recrystallization during ECAP were observed. It was found that a gradual decrease of grain size occurs with the increasing of number of ECAP passes. The grain refinement increases mechanical properties at ambient temperature, such as Vickers microhardness and compression strength proportionally to d-0.5.


2019 ◽  
Vol 781 ◽  
pp. 1150-1158 ◽  
Author(s):  
Wei Qiu ◽  
Zhiqiang Liu ◽  
Rongzong Yu ◽  
Jian Chen ◽  
Yanjie Ren ◽  
...  

2003 ◽  
Vol 9 (5) ◽  
pp. 453-458 ◽  
Author(s):  
Qinglin Jin ◽  
Jeong-Pil Eom ◽  
Su-Gun Lim ◽  
Won-Wook Park ◽  
Bong-Sun You

Sign in / Sign up

Export Citation Format

Share Document