Effects of Extrusion–Shear Process Conditions on the Microstructures and Mechanical Properties of AZ31 Magnesium Alloy

2016 ◽  
Vol 35 (10) ◽  
pp. 967-972
Author(s):  
H.J. Hu ◽  
Y.Y. Li ◽  
X. Wang ◽  
D.F. Zhang ◽  
M.B. Yang

AbstractIn this paper, the effects of extrusion–shear (ES) on the microstructures and mechanical properties of AZ31 magnesium alloy has been studied, which has been achieved by conducting a lot of experiments and tests, including ES process, direct extrusion with different billet temperatures, microstructure analysis, hardness test, tensile & compression tests. The results show that the ES-processed rods has higher strengths (yield strength and tensile strength) than the direct extrusion ones with the same billet temperature, which contributed to their lower averaged grain size obtained from microstructure analysis according to Hall–Petch relation. Besides, the hardness of ES-processed AZ31 magnesium alloy decreases with the increasing of billet temperature. By comparing the two processes, it can be seen that the ES process could refine the microstructure and improve the mechanical properties of magnesium alloy.

2021 ◽  
Author(s):  
LI Xing lin ◽  
Hongjun Hu ◽  
Zhang Huiling ◽  
Zhao Hui ◽  
ZHANG Dingfei ◽  
...  

Abstract A new severe plastic deformation for manufacturing thin-walled tube made of AZ31 magnesium alloy called TEB(Tube-Extrusion-Bending ) process, which combines direct extrusion with two step bending,has been developed to manufacture tube.The TEB process has been researched by using finite element modeling (FEM) method. The rules of extrusion temperatures and the extrusion forces varying with process parameters have been developed. A TEB process with installed containers and dies has been constructed to perform tests in order to validate the FEM model with different process conditions. And the microstructures evolution have been researched based on effective strains evolution. The results showed that refined and uniform microstructures can be achieved by TEB process. The research results showed that the TEB process would produce the serve plastic deformation and improve the recrystallization of the grains.The comparisons of FEM simulation and experimental results have been made to obtain the relative important principles of TEB process.


2011 ◽  
Vol 686 ◽  
pp. 305-309 ◽  
Author(s):  
Ding Fei Zhang ◽  
Jun Ping Zhang ◽  
Hong Jun Hu

This paper deals with a finite element model (FEM) for the extrusion of AZ31 alloy and extrusion experiments at different temperatures. The simulation is utilized to predict the extrusion force and strain at different temperatures. ES (extrusion-shear) process and direct extrusion are investigated at 370, 400 and 420°C to discuss the effects of different temperatures on the microstructures and mechanical properties with the extrusion ratio of 11.56. The simulation results obtained show that the extrusion force of ES process is much larger than direct extrusion because of the two corners. ES process could effectively refine the grains, especially the microstructure of the central region compared with direct extrusion. The bar extruded at 370°C shows the best microstructures and mechanical properties.


2011 ◽  
Vol 189-193 ◽  
pp. 4221-4226 ◽  
Author(s):  
Zhan Yong Zhao ◽  
Fu Rong Cao ◽  
Ren Guo Guan

AZ31 magnesium alloy profiles were prepared by continuous rheo-extrusion process, and effects of solution and aging treatments on the microstructures and mechanical properties was investigated by OLYMPUS optical microscope, scanning electron microscope, energy dispersive spectroscopy device and tensile machine. The results reveal that saturated solid solution was formed in the profile at a solution temperature of 415 °C and 16 hours. During aging treatment of saturated solid solution, β-Mg17Al12 phase nucleates firstly at grain boundaries and takes on globular growth, which is mainly due to the lower interfacial energy in coherent or semi-coherent interface between β-Mg17Al12 phase and matrix phase. Lower interfacial energy is favorable to the nucleation and growth of β-Mg17Al12 phase at grain boundary. With the increase of aging time or the rise of aging temperature, β-Mg17Al12 phase precipitates out gradually from grain interior and starts to grow in globular shape. After β-Mg17Al12 phase grows to a certain extent, it grows in lamellar shape along the orientation of lower mismatch between β-Mg17Al12 phase and matrix phase. After solution at 415°C and 16h and aging at 180°C and 8h, the ultimate tensile strength and elongation to failure of the profile are 305MPa and 13%, respectively.


Sign in / Sign up

Export Citation Format

Share Document