Superplastic behaviour of AZ91 magnesium alloy processed by high-pressure torsion

2015 ◽  
Vol 637 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmed S.J. Al-Zubaydi ◽  
Alexander P. Zhilyaev ◽  
Shun C. Wang ◽  
Philippa A.S. Reed
Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 681 ◽  
Author(s):  
Roberto B. Figueiredo ◽  
Terence G. Langdon

An AZ91 magnesium alloy (Mg-9%, Al-1% Zn) was processed by high-pressure torsion (HPT) after solution-heat treatment. Tensile tests were carried out at 423, 523, and 623 K in the strain rate range of 10−5−10−1 s−1 to evaluate the occurrence of superplasticity. Results showed that HPT processing refined the grain structure in the alloy, and grain sizes smaller than 10 µm were retained up to 623 K. Superplastic elongations were observed at low strain rates at 423 K and at all strain rates at 523 K. An examination of the experiment data showed good agreement with the theoretical prediction for grain-boundary sliding, the rate-controlling mechanism for superplasticity. Elongations in the range of 300–400% were observed at 623 K, attributed to a combination of grain-boundary-sliding and dislocation-climb mechanisms.


2019 ◽  
Vol 61 (3) ◽  
pp. 260-266 ◽  
Author(s):  
Ugur Koklu ◽  
Sezer Morkavuk ◽  
Levent Urtekin

1996 ◽  
Vol 35 (4) ◽  
pp. 529-534 ◽  
Author(s):  
Kun Wu ◽  
Mingyi Zheng ◽  
Min Zhao ◽  
Congkai Yao ◽  
Jihong Li

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4010
Author(s):  
Grzegorz Banaszek ◽  
Teresa Bajor ◽  
Anna Kawałek ◽  
Tomasz Garstka

This paper presents the results of numerical tests of the process of forging magnesium alloy ingots (AZ91) on a hydraulic press with the use of flat and proprietary shaped anvils. The analysis of the hydrostatic pressure distribution and the deformation intensity was carried out. It is one of the elements used for determining the assumptions for the technology of forging to obtain a semi-finished product from the AZ91 alloy with good strength properties. The aim of the research was to reduce the number of forging passes, which will shorten the operation time and reduce the product manufacturing costs. Numerical tests of the AZ91 magnesium alloy were carried out using commercial Forge®NxT software.


Sign in / Sign up

Export Citation Format

Share Document