scholarly journals Phase transformation and shape memory effect of a Cu-Al-Ni-Mn-Nb high temperature shape memory alloy

2016 ◽  
Vol 663 ◽  
pp. 64-68 ◽  
Author(s):  
E.M. Mazzer ◽  
C.S. Kiminami ◽  
C. Bolfarini ◽  
R.D. Cava ◽  
W.J. Botta ◽  
...  
2006 ◽  
Vol 41 (18) ◽  
pp. 6165-6167 ◽  
Author(s):  
Z. Y. Gao ◽  
Y. Wu ◽  
Y. X. Tong ◽  
W. Cai ◽  
Y. F. Zheng ◽  
...  

2019 ◽  
Vol 163 ◽  
pp. 1-13 ◽  
Author(s):  
C. Hayrettin ◽  
O. Karakoc ◽  
I. Karaman ◽  
J.H. Mabe ◽  
R. Santamarta ◽  
...  

2008 ◽  
Vol 138 ◽  
pp. 399-406 ◽  
Author(s):  
Xiang Long Meng ◽  
Yu Dong Fu ◽  
Wei Cai ◽  
J.X. Zhang ◽  
Qing Fen Li ◽  
...  

The martensitic transformation behavior and shape memory effect (SME) have been investigated in a Ni-rich Ti29.6Ni50.4Hf20 high temperature shape memory alloy (SMA) in the present study. After aging, the transformation temperatures of Ti29.6Ni50.4Hf20 alloy increase obviously due to the precipitation of (Ti,Hf)3Ni4 particles. And the transformation sequence changes from one-step to two-step. When the experimental alloy is aged at different temperatures for 2h, the transformation temperatures increase rapidly with increasing the aging temperature and then change slightly with further increasing the aging temperature. Most of the martensite variants preferentially oriented in the aged Ti29.6Ni50.4Hf20 alloy. The aged Ti29.6Ni50.4Hf20 alloy shows the better thermal stability of transformation temperatures than the solution-treated one because the precipitates depress the introduction of defects during thermal cycling. In addition, the proper aged Ti29.6Ni50.4Hf20 alloy also shows the larger SME than the solution-treated one since the precipitates strengthen the matrix strongly.


2016 ◽  
Vol 68 ◽  
pp. 113-117 ◽  
Author(s):  
Xin Zhang ◽  
Qingsuo Liu ◽  
Xianshun Zeng ◽  
Jiehe Sui ◽  
Wei Cai ◽  
...  

2018 ◽  
Vol 30 (2) ◽  
pp. 186-197 ◽  
Author(s):  
Reza Damansabz ◽  
Fathollah Taheri-Behrooz

Shape memory effect of NiTi wires is utilized to design various smart composite structures. In these systems, smart wires can induce strains in the host structure by their inherent shape memory effect and phase transformation at elevated temperatures. This article presents an experimental and numerical study on the actuation capability of shape memory alloy wires embedded in the carbon/epoxy composite. In the experimental part, hybrid shape memory alloy/carbon/epoxy composite specimens are fabricated and examined to measure induced strains in the host structure by the phase transformation of the shape memory alloy wires. Hybrid composite specimens were clamped at one end, and the shape memory alloy wires were activated using electrical resistive heating. Numerical simulations were carried out using ABAQUS software to simulate the actual thermomechanical behavior of the hybrid composite specimens. A three-dimensional finite element model based on cohesive zone modeling is used to predict interfacial debonding in hybrid composite plates. The results of the parametric study suggest that by increasing Young’s modulus of the host composites, the amount of the induced strain decreases rapidly. However, for Young’s moduli more than 20 GPa, the induced strain will stay almost constant. Moreover, it was confirmed that increasing the shape memory alloy pre-strain without controlling the actuation temperature may result in the reduction of induced strain in the host composites.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3775-3780 ◽  
Author(s):  
YOUNG-CHUL PARK ◽  
JIN-KYUNG LEE ◽  
SANG-PILL LEE ◽  
GYU-CHANG LEE ◽  
JOON-HYUN LEE ◽  
...  

TiNi shape memory alloy was used to recover the shape of transformed objects using its shape memory effect. This shape memory effect plays an important role inside metal matrix composite. A composite using shape memory alloy has a large advantage that can control crack initiation and propagation, when compared with other composites due to the shape memory effect of shape memory alloy under high temperature. In this study, TiNi/Al6061 and TiNi/2024 shape memory composites were fabricated by the hot press method, and a fatigue test was performed to evaluate the fatigue damage for the shape memory composites under room temperature and high temperature. The relationship of the crack growth rate and the stress intensity factor for these shape memory composites were clarified at both temperature conditions. The delay effect of crack propagation due to shape memory alloy was also evaluated under high temperature. In addition, an acoustic emission technique was used to evaluate the crack initiation and the control of crack propagation by shape memory effect under fatigue test nondestructively. The relationship between AE parameter and the degree of fatigue damage of the shape memory composites was discussed.


Sign in / Sign up

Export Citation Format

Share Document