Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique

2016 ◽  
Vol 669 ◽  
pp. 1-6 ◽  
Author(s):  
Hamza Alsalla ◽  
Liang Hao ◽  
Christopher Smith
Metals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 548 ◽  
Author(s):  
Jiapeng Luo ◽  
Xiao Jia ◽  
Ruinan Gu ◽  
Peng Zhou ◽  
Yongjiang Huang ◽  
...  

To fabricate metallic 316L/HA (hydroxyapatite) materials which meet the requirements of an implant’s mechanical properties and bioactivity for its function as human bone replacement, selective laser melting (SLM) has been employed in this study to prepare a 316L stainless steel matrix, which was subsequently covered with a hydroxyapatite (HA) coating using the sol-gel method. High density (98.9%) as-printed parts were prepared using a laser power of 230 W and a scanning speed of 800 mm/s. Austenite and residual acicular ferrite existed in the microstructure of the as-printed 316L stainless steel, and the sub-grain was uniform, whose primary dendrite spacing was around 0.35 μm. The as-printed 316L stainless steel showed the highest Vickers hardness, elastic modulus, and tensile strength at ~ (~ means about; same applies below unless stated otherwise) 247 HV, ~214.2 GPa, and ~730 MPa, respectively. The elongation corresponding to the highest tensile strength was ~38.8%. The 316L/HA structure, measured by the Relative Growth Rate (RGR) value, exhibited no cell cytotoxicity, and presented better biocompatibility than the uncoated as-printed and as-cast 316L samples.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744015 ◽  
Author(s):  
Zeng Zheng ◽  
Lianfeng Wang ◽  
Biao Yan

Selective laser melting (SLM) was used to prepare 316L stainless steel parts and the effects of laser power on the microstructure and mechanical properties of the final products were studied. With increasing applied laser power, the defects of as-built parts were reduced greatly and the as-built parts presented a highest relative density of 99.1%. The tensile strength of samples was significantly improved from 321 ± 10 MPa to 722 ± 10 MPa. The microhardness was homogeneous; the residual stresses in the samples were tensile, which were higher in the section perpendicular to the laser scanning strategy. The probable reasons for this phenomenon were proposed.


2014 ◽  
Vol 55 ◽  
pp. 533-541 ◽  
Author(s):  
Chunze Yan ◽  
Liang Hao ◽  
Ahmed Hussein ◽  
Philippe Young ◽  
David Raymont

Sign in / Sign up

Export Citation Format

Share Document