Achieving ultrafine grained Fe-Mn-Si shape memory alloys with enhanced shape memory recovery stresses

2017 ◽  
Vol 701 ◽  
pp. 285-288 ◽  
Author(s):  
Y.S. Kim ◽  
S.H. Han ◽  
E.S. Choi ◽  
W.J. Kim
2018 ◽  
Vol 119 (13) ◽  
pp. 1346-1349
Author(s):  
V. G. Pushin ◽  
N. N. Kuranova ◽  
A. V. Pushin

2008 ◽  
Vol 59 ◽  
pp. 156-161 ◽  
Author(s):  
I. Khmelevskaya ◽  
Sergey Prokoshkin ◽  
Vladimir Brailovski ◽  
K.E. Inaekyan ◽  
Vincent Demers ◽  
...  

The main functional properties (FP) of Ti-Ni Shape Memory Alloys (SMA) are their critical temperatures of martensitic transformations, their maximum completely recoverable strain (er,1 max) and maximum recovery stress (sr max). Control of the Ti-Ni-based SMA FP develops by forming well-developed dislocation substructures or ultrafine-grained structures using various modes of thermomechanical treatment (TMT), including severe plastic deformation (SPD). The present work shows that TMT, including SPD, under conditions of high pressure torsion (HPT), equal-channel angular pressing (ECAP) or severe cold rolling followed by post-deformation annealing (PDA), which creates nanocrystalline or submicrocrystalline structures, is more beneficial from SMA FP point of view than does traditional TMT creating well-developed dislocation substructure. ECAP and low-temperature TMT by cold rolling followed by PDA allows formation of submicrocrystalline or nanocrystalline structures with grain size from 20 to 300 nm in bulk, and long-size samples of Ti-50.0; 50.6; 50.7%Ni and Ti-47%Ni-3%Fe alloys. The best combination of FP: sr max =1400 MPa and er,1 max=8%, is reached in Ti-Ni SMA after LTMT with e=1.9 followed by annealing at 400°C which results in nanocrystalline (grain size of 50 to 80 nm) structure formation. Application of ultrafine-grained SMA results in decrease in metal consumption for various medical implants and devices based on shape memory and superelastiсity effects.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1939 ◽  
Author(s):  
Gheorghe Gurau ◽  
Carmela Gurau ◽  
Felicia Tolea ◽  
Vedamanickam Sampath

Severe plastic deformation (SPD) is widely considered to be the most efficient process in obtaining ultrafine-grained bulk materials. The aim of this study is to examine the effects of the SPD process on Ni-Fe-Ga ferromagnetic shape memory alloys (FSMA). High-speed high-pressure torsion (HSHPT) was applied in the as-cast state. The exerted key parameters of deformation are described. Microstructural changes, including morphology that were the result of processing, were investigated by optical and scanning electron microscopy. Energy-dispersive X-ray spectroscopy was used to study the two-phase microstructure of the alloys. The influence of deformation on microstructural features, such as martensitic plates, intragranular γ phase precipitates, and grain boundaries’ dependence of the extent of deformation is disclosed by transmission electron microscopy. Moreover, the work brings to light the influence of deformation on the characteristics of martensitic transformation (MT). Vickers hardness measurements were carried out on disks obtained by SPD so as to correlate the hardness with the microstructure. The method represents a feasible alternative to obtain ultrafine-grained bulk Ni-Fe-Ga alloys.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-973-C8-978
Author(s):  
M. Jurado ◽  
Ll. Mañosa ◽  
A. González-Comas ◽  
C. Stassis ◽  
A. Planes

Sign in / Sign up

Export Citation Format

Share Document