Functional Properties of Ti-Ni-Based Shape Memory Alloys

2008 ◽  
Vol 59 ◽  
pp. 156-161 ◽  
Author(s):  
I. Khmelevskaya ◽  
Sergey Prokoshkin ◽  
Vladimir Brailovski ◽  
K.E. Inaekyan ◽  
Vincent Demers ◽  
...  

The main functional properties (FP) of Ti-Ni Shape Memory Alloys (SMA) are their critical temperatures of martensitic transformations, their maximum completely recoverable strain (er,1 max) and maximum recovery stress (sr max). Control of the Ti-Ni-based SMA FP develops by forming well-developed dislocation substructures or ultrafine-grained structures using various modes of thermomechanical treatment (TMT), including severe plastic deformation (SPD). The present work shows that TMT, including SPD, under conditions of high pressure torsion (HPT), equal-channel angular pressing (ECAP) or severe cold rolling followed by post-deformation annealing (PDA), which creates nanocrystalline or submicrocrystalline structures, is more beneficial from SMA FP point of view than does traditional TMT creating well-developed dislocation substructure. ECAP and low-temperature TMT by cold rolling followed by PDA allows formation of submicrocrystalline or nanocrystalline structures with grain size from 20 to 300 nm in bulk, and long-size samples of Ti-50.0; 50.6; 50.7%Ni and Ti-47%Ni-3%Fe alloys. The best combination of FP: sr max =1400 MPa and er,1 max=8%, is reached in Ti-Ni SMA after LTMT with e=1.9 followed by annealing at 400°C which results in nanocrystalline (grain size of 50 to 80 nm) structure formation. Application of ultrafine-grained SMA results in decrease in metal consumption for various medical implants and devices based on shape memory and superelastiсity effects.

2008 ◽  
Vol 584-586 ◽  
pp. 852-857 ◽  
Author(s):  
Juri Burow ◽  
Egor Prokofiev ◽  
Christoph Somsen ◽  
Jan Frenzel ◽  
Ruslan Valiev ◽  
...  

Martensitic transformations in NiTi shape memory alloys (SMAs) strongly depend on the microstructure. In the present work, we investigate how martensitic transformations are affected by various types of ultra-fine grained (UFG) microstructures resulting from various processing routes. NiTi SMAs with UFG microstructures were obtained by equal channel angular pressing, high pressure torsion, wire drawing and subsequent annealing treatments. The resulting material states were characterized by transmission electron microscopy and differential scanning calorimetry (DSC). The three thermomechanical processing routes yield microstructures which significantly differ in terms of grain size and related DSC chart features. While the initial coarse grained material shows a well defined one-step martensitic transformation on cooling, two-step transformations were found for all UFG material states. The functional stability of the various UFG microstructures was evaluated by thermal cycling. It was found that UFG NiTi alloys show a significantly higher stability. In the present work, we also provide preliminary results on the effect of grain size on the undercooling required to transform the material into B19’ and on the related heat of transformation.


2012 ◽  
Vol 706-709 ◽  
pp. 1931-1936 ◽  
Author(s):  
Sergey Prokoshkin ◽  
Vladimir Brailovski ◽  
Karine Inaekyan ◽  
Andrey Korotitskiy ◽  
Sergey Dubinskiy ◽  
...  

The processes of structure formation in Ti-Ni and in Ti-Nb-Zr, Ti-Nb-Ta shape memory alloys (SMA) under thermomechanical treatment (TMT) were studied. The TMT comprised cold rolling with true strains from e=0.25 to 2 and post-deformation annealing. Differences in these processes between two groups of alloys are considered. The main conclusions are as follows: nanostructures created by TMT are useful for radical improvement of the SMA functional properties, and an optimum nanostructure (nanocrystalline structure, nanosubgrained structure or theirmixture) should be selected by taking into account other structural and technological factors.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1939 ◽  
Author(s):  
Gheorghe Gurau ◽  
Carmela Gurau ◽  
Felicia Tolea ◽  
Vedamanickam Sampath

Severe plastic deformation (SPD) is widely considered to be the most efficient process in obtaining ultrafine-grained bulk materials. The aim of this study is to examine the effects of the SPD process on Ni-Fe-Ga ferromagnetic shape memory alloys (FSMA). High-speed high-pressure torsion (HSHPT) was applied in the as-cast state. The exerted key parameters of deformation are described. Microstructural changes, including morphology that were the result of processing, were investigated by optical and scanning electron microscopy. Energy-dispersive X-ray spectroscopy was used to study the two-phase microstructure of the alloys. The influence of deformation on microstructural features, such as martensitic plates, intragranular γ phase precipitates, and grain boundaries’ dependence of the extent of deformation is disclosed by transmission electron microscopy. Moreover, the work brings to light the influence of deformation on the characteristics of martensitic transformation (MT). Vickers hardness measurements were carried out on disks obtained by SPD so as to correlate the hardness with the microstructure. The method represents a feasible alternative to obtain ultrafine-grained bulk Ni-Fe-Ga alloys.


2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


2008 ◽  
Vol 584-586 ◽  
pp. 127-132 ◽  
Author(s):  
Anastasia E. Sergeeva ◽  
Daria Setman ◽  
Michael Zehetbauer ◽  
Sergey Prokoshkin ◽  
Vladimir V. Stolyarov

The aim of this paper is the investigation of electroplastic deformation (EPD) and subsequent annealing influence on martensitic transformation in the shape memory Ni50.7Ti49.3 alloy. Using differential scanning calorimetry method it was shown that EPD at the low strain stimulates structure relaxation and recovers martensitic transformation in cooling, which is usually suppressed by cold rolling.


2007 ◽  
Vol 49 (1-2) ◽  
pp. 51-56 ◽  
Author(s):  
S. D. Prokoshkin ◽  
M. N. Belousov ◽  
V. Ya. Abramov ◽  
A. V. Korotitskii ◽  
S. Yu. Makushev ◽  
...  

2005 ◽  
Vol 14 (5) ◽  
pp. S186-S191 ◽  
Author(s):  
Gunther Eggeler ◽  
Jafar Khalil-Allafi ◽  
Susanne Gollerthan ◽  
Christoph Somsen ◽  
Wolfgang Schmahl ◽  
...  

2018 ◽  
Vol 147 ◽  
pp. 83-87 ◽  
Author(s):  
Behnam Amin-Ahmadi ◽  
Joseph G. Pauza ◽  
Ali Shamimi ◽  
Tom W. Duerig ◽  
Ronald D. Noebe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document