Effect of long-term aging on the microstructure, stress rupture properties and deformation mechanisms of a new cast nickel base superalloy

2018 ◽  
Vol 736 ◽  
pp. 76-86 ◽  
Author(s):  
Meiqiong Ou ◽  
Yingche Ma ◽  
Hualong Ge ◽  
Bo Chen ◽  
Shijian Zheng ◽  
...  
2013 ◽  
Vol 747-748 ◽  
pp. 777-782
Author(s):  
Shuai Yang ◽  
Jian Zhang ◽  
Yu Shi Luo ◽  
Yun Song Zhao ◽  
Ding Zhong Tang ◽  
...  

The effect of Ru addition (0 wt.%, 3 wt.%, 5 wt.%), on γ morphology, elemental segregation, microstructural stability under long-term thermal exposure at 980 and stress rupture properties at 1100°C/130MPa have been studied. The results showed that with the increase of Ru content, the γ/γ eutectic volume fraction and the dendrite arm spacing decreased gradually. The γ' phase mean size in three alloys decreased with the increase of the Ru content. On the other hand, the dendrite segregation of Al, Ta towards interdendrite area and ReW towards dendrite core area was alleviated gradually with the increase of the Ru content. The increase of Ru content from 0 wt.% to 5 wt.% pronouncedly enhanced the stress rupture properties by suppressing the precipitation of TCP phases effectively at high temperature.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 664 is a nickel-base high-temperature alloy that can be precipitation hardened because of its contents of aluminum and titanium. Vacuum melting is used in its production to provide excellent quality and reproducability. It is used for applications requiring a good combination of creep and stress-rupture properties up to about 1500 F. Typical applications are gas-turbine components, airframes and fasteners. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-269. Producer or source: Nickel alloy producers.


2015 ◽  
Vol 658 ◽  
pp. 14-18
Author(s):  
Tanaporn Rojhirunsakool ◽  
Duangkwan Thongpian ◽  
Nutthita Chuankrerkkul ◽  
Panyawat Wangyao

Nickel-base superalloys have been used as high temperature materials in land-base gas turbine application. When subjected to long term, high temperature service, large crack propagation was observed. Typical refurbishment method of these turbines is carried out by using TIG welding followed by post-weld standard heat treatment. However, new crack initiation is found in the heat-affected zone after TIG welding. Pre-weld heat treatment has been discovered to improves final γ + γ’ microstructure. This study focuses on the effect of pre-weld heat treatment temperature on final γ + γ’ microstructure. Seven different conditions of pre-weld heat treatment temperature were investigated. Scanning electron microscopy studies were carried out after pre-weld and post-weld heat treatments to compare the γ + γ’ microstructure and capture microcracks. The best pre-weld heat treatment temperature produces uniform distribution of finely dispersed γ’ precipitates in the γ matrix without post-weld crack.


2017 ◽  
Vol 891 ◽  
pp. 433-437 ◽  
Author(s):  
Nattapol Kontikame ◽  
Sureerat Polsilapa ◽  
Panyawat Wangyao

This research work has an aim to investigate the effect of precipitation aging temperatures of 845°C, 865°C, 885°C and 905°C for 24 hours after solutioning treatment at temperature of 1145°C for 4 hours on final microstructure of cast nickel base superalloy, grade Inconel 738, which is used as a material for turbine blades in land base gas turbine engines to generate electricity in power plants. Further interesting is also extended to study and evaluate the phase stability of precipitated gamma prime particles after long-term heating at tempeatures of 900°C and 1000°C for 200 hours of all received final microstructures after various reheat treatment conditions. From all obtained results, it was found that the higher precipitation aging temperatures provided the more coarsening size of both coarse and fine gamma prime particles. Furthermore, after long-term exposure at high temperatures, this resulted in an increasing of both area density and size of gamma prime particles.


2017 ◽  
Vol 891 ◽  
pp. 420-425
Author(s):  
Sureerat Polsilapa ◽  
Aimamorn Promboopha ◽  
Panyawat Wangyao

Cast nickel based superalloy, Grade Inconel 738, is a material for turbine blades. Its rejuvenation heat treatment usually consist of solution treatment condition with temperature range of 1125-1205 oC for 2-6 hours. Then it is following with double aging process including primary aging at 1055oC for 1 hour and secondary aging at 845oC for 24 hours. However, the various selected temperature dropping program were performed during solution treatment to simulate the possible error of heating furnace. The maximum number of temperature dropping during solution treatment is varied from 1-3 times From all obtained results, the various temperature dropping during solution treatment conditions showed extremely the significant effect on the final rejuvenated microstructures and long-term gamma prime stability after heating at temperature of 900oC for 200 hours.


Sign in / Sign up

Export Citation Format

Share Document