Experiments and crystal plasticity simulations for the deformation behavior of nanoindentation: Application to the α2 phase of TiAl alloy

Author(s):  
Bangqi Yin ◽  
Xiangyi Xue ◽  
Bin Tang ◽  
Yi Wang ◽  
Hongchao Kou ◽  
...  
2015 ◽  
Vol 651-653 ◽  
pp. 570-574 ◽  
Author(s):  
Akinori Yamanaka

The plastic deformation behavior of dual-phase (DP) steel is strongly affected by its underlying three-dimensional (3D) microstructural factors such as spatial distribution and morphology of ferrite and martensite phases. In this paper, we present a coupled simulation method by the multi-phase-field (MPF) model and the crystal plasticity fast Fourier transformation (CPFFT) model to investigate the 3D microstructure-dependent plastic deformation behavior of DP steel. The MPF model is employed to generate a 3D digital image of DP microstructure, which is utilized to create a 3D representative volume element (RVE). Furthermore, the CPFFT simulation of tensile deformation of DP steel is performed using the 3D RVE. Through the simulations, we demonstrate the stress and strain partitioning behaviors in DP steel depending on the 3D morphology of DP microstructure can be investigated consistently.


2007 ◽  
Vol 539-543 ◽  
pp. 1531-1536 ◽  
Author(s):  
J.S. Kim ◽  
You Hwan Lee ◽  
Young Won Kim ◽  
Chong Soo Lee

In this study, high-temperature deformation behavior of newly developed beta-gamma TiAl alloys was investigated in the context of the dynamic-materials model (DMM). Processing maps representing the efficiency of power consumption for microstructure evolution were constructed utilizing the results of compression test at temperatures ranging from 1000oC to 1200oC and strain rates ranging from 10-4/s to 102/s and Artificial Neural Network simulation method. With the help of processing map and microstructural analysis, the optimum processing condition for the betagamma TiAl alloy was investigated. The role of β phase was also discussed in this study.


Sign in / Sign up

Export Citation Format

Share Document