Dispersoid characteristics and elevated temperature creep resistance of Al–Si–Mg cast alloy with Zr addition

Author(s):  
Huilan Huang ◽  
Wang Li ◽  
Chuanbo Hu ◽  
Lipeng Ding ◽  
Zhihong Jia ◽  
...  
2021 ◽  
Author(s):  
Mohammed Bin Rusayyis ◽  
John M. Torkelson

Conventionally cross-linked polymer networks known as thermosets contain permanent cross-links which prevent their recyclability, leading to major sustainability and environmental challenges. To overcome this problem, covalent adaptable networks (CANs) containing...


2009 ◽  
Vol 23 (06n07) ◽  
pp. 855-862 ◽  
Author(s):  
FEIYUE MA ◽  
ZHIYI LIU

The microstructural evolution in an Al - Cu - Mg - Ag alloy with trace Zr addition during homogenization treatment was characterized by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). It was shown that the low-melting-point phase segregating toward grain boundaries is Al 2 Cu , with a melting point of 523.52°C. A two-step homogenization process was employed to optimize the microstructure of the as-cast alloy, during which the alloy was first homogenized at a lower temperature, then at a higher temperature. After homogenized at 420°C for 6 h, Al 3 Zr particles were finely formed in the matrix. After that, when the alloy was homogenized at an elevated temperature for a longer time, i.e., 515°C for 24 h, most of the precipates at the grain boundaries were removed. Furthermore, the dispersive Al 3 Zr precipitates were retained, without coarsening greatly in the final homogenization step. A kinetics model is employed to predict the optimal homogenization time at a given temperature theoretically, and it confirms the result in present study, which is 420°C/6h+515°C/24h.


2013 ◽  
Vol 212 ◽  
pp. 247-254
Author(s):  
Marek Cieśla ◽  
Franciszek Binczyk ◽  
Marcin Mańka

mpact of complex modification and filtration during pouring into moulds on durability has been evaluated in this study in conditions of high-temperature creep of castings made from nickel superalloy IN-713C post production rejects. The conditions of initiation and propagation of cracks in the specimens were analysed with consideration of morphological properties of material macro-, micro-and substructure. It has been demonstrated that in conditions of high-temperature creep at temperature 980°C with stress σ =150 MPa creep resistance of the IN-713C superalloy increases significantly with the increase of macrograin size. Creep resistance of specimens made of coarse grain material was significantly higher than the resistance of fine grain material.


2014 ◽  
Vol 1025-1026 ◽  
pp. 555-558
Author(s):  
Martin Reznicek ◽  
David Manas ◽  
Michal Stanek ◽  
Martin Ovsik ◽  
Martin Bednarik ◽  
...  

This article studies creep of a radiation cross linked HDPE polymer material. It describes a process of production of test samples, which are then radiation cross linked in six doses of radiation. These samples are tested for creep resistance at elevated temperatures on a machine of custom design that will provide sufficient information about a suitable use for the material and to find an optimal dose to achieve minimal stretching. [1-3]


2003 ◽  
Vol 93 (10) ◽  
pp. 7118-7120 ◽  
Author(s):  
S. Liu ◽  
S. Bauser ◽  
Z. Turgut ◽  
J. Coate ◽  
R. T. Fingers

2001 ◽  
Vol 7 (S2) ◽  
pp. 544-545
Author(s):  
Philip J. Maziasz

Alloy development can range from purely empirical, trial-and-error efforts to very theoretical, based on either fundamental first-principles calculations or computational-modeling using various kinds of data base inputs. However, “real-world” efforts to improve or optimize complex engineering alloys often cannot afford the time or cost of either extreme approach. in the past 10-15 years, an alloy development and processing optimization methodology has been developed that utilizes strategic microanalytical data (both detailed microstucture and microcompositional information) as the critical input that then enables efficient and effective design of various kinds of alloys for improved high-temperature performance [1-6]. in many cases, first time tests produce outstanding high-temperature creep or creep-rupture results, and enable improvements without trading off one property for another. This invited paper will highlight several examples of significantly improved creep resistance obtained using such microstructural design.This microstructural design methodology for high-temperature creep-resistance was initially developed for and demonstrated in austenitic stainless steels (Fe-14Cr-16Ni) designed for improved creep-strength and rupture resistance at 700°C and above for superheater and boiler tubing in advanced fossil power plants.


Sign in / Sign up

Export Citation Format

Share Document