Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering

2014 ◽  
Vol 42 ◽  
pp. 362-367 ◽  
Author(s):  
Xue Zhang ◽  
Xiao-Wu Li ◽  
Ji-Guang Li ◽  
Xu-Dong Sun
Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 664
Author(s):  
Haiyuan Zhao ◽  
Yafeng Han ◽  
Chen Pan ◽  
Ding Yang ◽  
Haotian Wang ◽  
...  

In order to obtain scaffold that can meet the therapeutic effect, researchers have carried out research on irregular porous structures. However, there are deficiencies in the design method of accurately controlling the apparent elastic modulus of the structure at present. Natural bone has a gradient porous structure. However, there are few studies on the mechanical property advantages of gradient bionic bone scaffold. In this paper, an improved method based on Voronoi-tessellation is proposed. The method can get controllable gradient scaffolds to fit the modulus of natural bone, and accurately control the apparent elastic modulus of porous structure, which is conducive to improving the stress shielding. To verify the designed structure can be fabricated by additive manufacturing, several designed models are obtained by SLM and EBM. Through finite element analysis (FEA), it is verified that the irregular porous structure based on Voronoi-tessellation is more stable than the traditional regular porous structure of the same structure volume, the same pore number and the same material. Furthermore, it is verified that the gradient irregular structure has a better stability than the non-gradient structure. An experiment is conducted successfully to verify the stability performance got by FEA. In addition, a dynamic impact FEA is also performed to simulate impact resistance. The result shows that the impact resistance of the regular porous structure, the irregular porous structure and the gradient irregular porous structure becomes better in turn. The mechanical property verification provides a theoretical basis for the structural design of gradient irregular porous bone tissue engineering scaffolds.


2009 ◽  
Vol 4 (1) ◽  
pp. 015016 ◽  
Author(s):  
Lili Tan ◽  
Mingming Gong ◽  
Feng Zheng ◽  
Bingchun Zhang ◽  
Ke Yang

2021 ◽  
pp. 109948
Author(s):  
Tao Lin ◽  
Xueting Wang ◽  
Liuping Jin ◽  
Wenyuan Li ◽  
Yuxuan Zhang ◽  
...  

2019 ◽  
Vol 29 (5) ◽  
pp. 984-996 ◽  
Author(s):  
Hamid Reza BAKHSHESHI-RAD ◽  
Ehsan DAYAGHI ◽  
Ahmad Fauzi ISMAIL ◽  
Madzlan AZIZ ◽  
Ali AKHAVAN-FARID ◽  
...  

2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Author(s):  
Mariane Beatriz Sordi ◽  
Ariadne Cristiane Cabral da Cruz ◽  
Águedo Aragones ◽  
Mabel Mariela Rodríguez Cordeiro ◽  
Ricardo de Souza Magini

The aim of this study was to synthesize, characterize, and evaluate degradation and biocompatibility of poly(lactic-co-glycolic acid) + hydroxyapatite / β-tricalcium phosphate (PLGA+HA/βTCP) scaffolds incorporating simvastatin (SIM) to verify if this biomaterial might be promising for bone tissue engineering. Samples were obtained by the solvent evaporation technique. Biphasic ceramic particles (70% HA, 30% βTCP) were added to PLGA in a ratio of 1:1. Samples with SIM received 1% (m:m) of this medication. Scaffolds were synthesized in a cylindric-shape and sterilized by ethylene oxide. For degradation analysis, samples were immersed in PBS at 37 °C under constant stirring for 7, 14, 21, and 28 days. Non-degraded samples were taken as reference. Mass variation, scanning electron microscopy, porosity analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry were performed to evaluate physico-chemical properties. Wettability and cytotoxicity tests were conducted to evaluate the biocompatibility. Microscopic images revealed the presence of macro, meso, and micropores in the polymer structure with HA/βTCP particles homogeneously dispersed. Chemical and thermal analyses presented very similar results for both PLGA+HA/βTCP and PLGA+HA/βTCP+SIM. The incorporation of simvastatin improved the hydrophilicity of scaffolds. Additionally, PLGA+HA/βTCP and PLGA+HA/βTCP+SIM scaffolds were biocompatible for osteoblasts and mesenchymal stem cells. In summary, PLGA+HA/βTCP scaffolds incorporating simvastatin presented adequate structural, chemical, thermal, and biological properties for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document