Effect of hydroxyapatite whisker surface graft polymerization on water sorption, solubility and bioactivity of the dental resin composite

2015 ◽  
Vol 53 ◽  
pp. 150-155 ◽  
Author(s):  
Fengwei Liu ◽  
Xiaoze Jiang ◽  
Shuang Bao ◽  
Ruili Wang ◽  
Bin Sun ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2817
Author(s):  
Biao Yu ◽  
Jingwei He ◽  
Sufyan Garoushi ◽  
Pekka K. Vallittu ◽  
Lippo Lassila

In order to improve the toughness and reduce polymerization shrinkage of traditional bisphenol A-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) based dental resin system, a hyperbranched thiol oligomer (HMDI-6SH) was synthesized via thiol-isocyanate click reaction using pentaerythritol tetra(3-mercaptopropionate (PETA) and dicyclohexylmethane 4,4′-diisocyanate (HMDI) as raw materials. Then HMDI-6SH was mixed with 1,3,5-Triallyl-1,3,5-Triazine-2,4,6(1H,3H,5H)-Trione (TTT) to prepare thiol-ene monomer systems, which were added into Bis-GMA/TEGDMA resins with different mass ratio from 10 wt% to 40 wt% to serve as anti-shrinking and toughening agent. The physicochemical properties of these thiol-ene-methacrylate ternary resins including functional groups conversion, volumetric shrinkage, flexural properties, water sorption, and water solubility were evaluated. The results showed that the incorporation of HMDI/TTT monomer systems into Bis-GMA/TEGDMA based resin could improve C=C double bond conversion from 62.1% to 82.8% and reduced volumetric shrinkage from 8.53% to 4.92%. When the mass fraction of HMDI/TTT monomer systems in the resins was no more than 20 wt%, the flexural strength of the resin was higher or comparable to Bis-GMA/TEGDMA based resins (p > 0.05). The toughness (it was measured from the stress–strain curves of three-point bending test) of the resins was improved. Water sorption and water solubility tests showed that the hydrophobicity of resin was enhanced with increasing the content of thioester moiety in resin.


2003 ◽  
Vol 35 (4) ◽  
pp. 379-383 ◽  
Author(s):  
Peng Liu ◽  
Jun Tian ◽  
Weimin Liu ◽  
Qunji Xue

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7058
Author(s):  
Akane Chin ◽  
Masaomi Ikeda ◽  
Tomohiro Takagaki ◽  
Toru Nikaido ◽  
Alireza Sadr ◽  
...  

The purpose of this study was to evaluate the effect of one week of Computer-aided design/Computer-aided manufacturing (CAD/CAM) crown storage on the μTBS between resin cement and CAD/CAM resin composite blocks. The micro-tensile bond strength (μTBS) test groups were divided into 4 conditions. There are two types of CAD/CAM resin composite blocks, namely A block and P block (KATANA Avencia Block and KATANA Avencia P Block, Kuraray Noritake Dental, Tokyo, Japan) and two types of resin cements. Additionally, there are two curing methods (light cure and chemical cure) prior to the μTBS test—Immediate: cementation was performed immediately; Delay: cementation was conducted after one week of storage in air under laboratory conditions. The effect of Immediate and Delayed cementations were evaluated by a μTBS test, surface roughness measurements, light intensity measurements, water sorption measurements and Scanning electron microscope/Energy dispersive X-ray spectrometry (SEM/EDS) analysis. From the results of the μTBS test, we found that Delayed cementation showed significantly lower bond strength than that of Immediate cementation for both resin cements and both curing methods using A block. There was no significant difference between the two types of resin cements or two curing methods. Furthermore, water sorption of A block was significantly higher than that of P block. Within the limitations of this study, alumina air abrasion of CAD/CAM resin composite restorations should be performed immediately before bonding at the chairside to minimize the effect of humidity on bonding.


Author(s):  
Dalia Abdel Hamid ◽  
Amal Esawi ◽  
Inas Sami ◽  
Randa Elsalawy

Adhesively-bonded resin composites have the advantage of conserving sound tooth structure with the potential for tooth reinforcement, while at the same time providing an aesthetically acceptable restoration. However, no composite material has been able to meet both the functional needs of posterior restorations and the superior aesthetics required for anterior restoration. In an attempt to develop a dental resin composite that had the mechanical strength of hybrid composite materials and the superior polish and gloss retention associated with microfilled materials, nanofilled resin composites have been introduced in the market. Although nanofillers are the most popular fillers utilized in current visible light-activated dental resin composites and are claimed to be the solution for the most challenging material limitations as a universal restorative material, the mechanisms by which these fillers influence the resin composite properties are not well explained. In this study, some physical and mechanical properties of a nanofilled resin composite containing 60 vol. % zirconia and silica fillers were evaluated and compared to those of a microhybrid resin composite of the same composition. The nanofilled resin composite was found to have equivalent polymerization shrinkage and depth of cure to the microhybrid material but a slightly lower degree of conversion and density. Regarding mechanical behaviour, although the nanocomposite was found to exhibit significantly higher wear resistance, and equivalent flexural strength, its indentation modulus and nanohardness were slightly lower. Field-emission scanning electron microscopy (FE-SEM) analysis was conducted in order to evaluate the microstructure and to obtain a better understanding of the effect of the nanofillers on the behaviour of the nanocomposite.


2012 ◽  
Vol 28 (7) ◽  
pp. 729-735 ◽  
Author(s):  
Sarah S. Mikhail ◽  
Shereen S. Azer ◽  
William M. Johnston

2019 ◽  
Vol 53 (22) ◽  
pp. 3085-3092 ◽  
Author(s):  
Xin Wen ◽  
Rashed Almousa ◽  
Gregory G Anderson ◽  
Dong Xie

A novel antibacterial resin composite has been developed and evaluated. Glycerol dimethacrylate was derivatized to have an antibacterial moiety attached and incorporated to a conventional resin composite formulation. Compressive strength and bacterial viability were used to evaluate the modified resin composites. Results showed that the modified resin composites showed a significantly enhanced antibacterial activity along with improved mechanical and physical properties. It was found that bromine-containing resin composite showed a higher antibacterial activity than its chlorine-containing counterpart. The modified resin composites showed an increase of 37–41% in yield strength, 23–27% in modulus, 9–15% in diametral tensile strength and 5–12% in flexural strength and a decrease of 35–69% in bacterial viability, 20–37% in water sorption, 7–12% in shrinkage and 7–10% in compressive strength, as compared to unmodified resin composite. Within the limitations of this study, the modified resin composite may potentially be developed into a clinically useful dental restorative since it demonstrated good mechanical strengths and potent antibacterial function.


Sign in / Sign up

Export Citation Format

Share Document