scholarly journals Comparative Study of physicochemical and rheological property of waste cooking oil, castor oil, rubber seed oil, their methyl esters and blends with mineral diesel fuel

Author(s):  
Atanu Kumar Paul ◽  
Venu Babu Borugadda ◽  
Ali Shemsedin Reshad ◽  
Machhindra S. Bhalerao ◽  
Pankaj Tiwari ◽  
...  
2020 ◽  
Vol 15 (3) ◽  
pp. 808-817
Author(s):  
Nurazreen Shazwin Kamarudin ◽  
Harumi Veny ◽  
Nailah Fasihah Sidek ◽  
Faisal Abnisa ◽  
Rozana Azrina Sazali ◽  
...  

Trimethylolpropane (TMP) ester is an eco-friendly lubricant that fully biodegradable and known as bio lubricant. In this study, TMP ester was produced from waste cooking oil and rubber seed oil through a two-step synthesis approach. The reaction is two stages transesterifications, in which the waste cooking oil and the rubber seed oil were first transesterified with methanol to produce methyl ester, followed by transesterification with TMP using para-Toluenesulfonic acid (p-TSA) as catalyst. Various effects of operating conditions were observed, such as reaction time, temperature and molar ratio of reactants. The TMP ester formation was determined based on the quantity of reactant conversion. The synthesized TMP ester was compared and characterized according to their properties. The results showed that the TMP ester from waste cooking oil (WCO) has shown better conversion compare to TMP ester from rubber seed oil (RSO), within a similar operating condition. The highest TMP ester conversion from WCO is 71%, at temperature of 150 ºC with molar ratio of FAME to TMP of 3:1 and catalyst amount of 2% (wt/wt). In addition, these polyol based esters from WCO and RSO exhibit appropriate basic properties for viscosity when compare with requirement standard of lubricant ISO VG46. Copyright © 2020 BCREC Group. All rights reserved 


2018 ◽  
Vol 41 (5) ◽  
pp. 1013-1018 ◽  
Author(s):  
Hanh Ngoc Thi Le ◽  
Kiyoshi Imamura ◽  
Norie Watanabe ◽  
Masakazu Furuta ◽  
Norimichi Takenaka ◽  
...  

2016 ◽  
Vol 148 ◽  
pp. 479-486 ◽  
Author(s):  
Awais Bokhari ◽  
Suzana Yusup ◽  
Lai Fatt Chuah ◽  
Ruzaimah Nik M. Kamil

2014 ◽  
Vol 1070-1072 ◽  
pp. 152-156
Author(s):  
Yong Yan Zhao ◽  
Yu Bao Chen ◽  
Shun Ping Yang ◽  
Wu Di Zhang ◽  
Yan Ni Gao

One-step hydrotreatment of three different vegetable oils have been carried out over Pd loading bi-functional catalyst in batch reactor. Rubber seed oil, Jatropha oil and castor oil have different acid value and constituents, which will influence the hydroprocessing and the quality of products. With temperature rising, several principles have been summarized, and an optimal temperature corresponding to three oils have been determined respectively. At the optimal temperature of Jatropha oil, 300°C, deoxygenation rate was up to 99.29%, C8-16hydrocarbons of products was up to 77.36%; 310°C and 320°C were respectively optimal temperature of rubber seed oil and castor oil, deoxygenation rate were 99.15% and 98.78%, C8-16hydrocarbons were 71.46% and 69.25%. The products quality of Jatropha oil was better than rubber seed oil and castor oil, and rubber seed oil and castor oil can cause the deactivation of catalyst.


2012 ◽  
Vol 581-582 ◽  
pp. 133-137
Author(s):  
Hong Wang ◽  
Yan Lin Sun ◽  
Li Zhang

Abstract: This paper is focused on the preparation of biodiesel from crude rubber seed oil with high free fatty acids (FFA) content. The rubber seeds were collected in Xishuangbanna, Yunnan province. Two-step synthesis was selected to obtain the product, that is, acid catalyzed esterification was carried out first to decrease the FFA content, then methyl esters of fatty acids can be formed by alkaline transesterification. The reaction conditions of alkaline transesterification were investigated. The results show that the optimum technique is to carry out the reaction at 60°C for 1.5h, with the methanol-to-oil molar ratio 6:1, the catalyst amount 1.0% (g NaOH/ g oil). The yield can reach 75%. GC analysis shows the content of methyl esters of fatty acids is 82.29%. Some properties of biodiesel prepared are also presented.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 196
Author(s):  
N. Hamzah ◽  
S. Mohd Isa ◽  
N. Ahmad Tajuddin

Biodiesel can help to reduce the world‘s dependence on fossil fuels and which also has significant environmental benefits. Biodiesel is a mixture of fatty acid methyl esters (FAME) obtained via transesterification of vegetable oils or animal fats with an alcohol. The rubber seed oil (RSO) is chosen as a potential non-edible vegetable oil for the production of biodiesel. The oil was extracted from the seed by using pressurized liquid extraction (ASE). The percentage rubber seed oil extracted from 2.6 kilograms rubber seed was obtained 35%. The acid value of RSO has reduced from 52.3 mg KOH/g to 0.8 mg KOH/g while FFA% value has reduced from 35% to 1.18% after acid esterification was applied to RSO. The oil was proceed with base transesterification where the triglycerides from the oil were converted into FAME. The optimization of transesterification process was performed in order to determine the optimum conditions that give the highest FAME yield. Result shows that optimum conditions of the transesterification of rubber seed oil were 1:6 of oil to methanol mass ratio ,30 wt% KOH catalyst, 60 oC reaction temperature and 60 minutes reaction time, that offering the highest biodiesel yield of 96%.   


Sign in / Sign up

Export Citation Format

Share Document