Distinct band UV–Visible photo sensing property of ZnO-Porous silicon (PS):p-Si hybrid MSM heterostructure

2020 ◽  
Vol 118 ◽  
pp. 105188 ◽  
Author(s):  
M. Das ◽  
S. Sarmah ◽  
D. Barman ◽  
B.K. Sarma ◽  
D. Sarkar
2018 ◽  
Vol 6 (4) ◽  
pp. 160-165
Author(s):  
Ahmed F. Abdulrahman ◽  
Sabah M. Ahmed ◽  
Naser M. Ahmed

ZnO nanorods arrays are synthesized over the different substrates namely; Indium Tin Oxide (ITO), Kapton Tape (KT), Polyethylene terephthalate (PET), Porous Silicon (PS) and Silicon (Si) using modified chemical bath deposition (MCBD) method at 95 ºC for 4 h. The MCBD is the air bubbles inside growth solution during CBD process. The ZnO nano-seed layers are coated on different substrates using RF magnetron sputtering technique. The optical properties (transmittance, reflectance and energy band gap) and surface morphology of ZnO nanorods grown on different substrates have been investigated in details by using UV-Visible Spectrometer and Field emission scanning electron microscopy (FESEM), respectively. The results found that the morphology and diameter of ZnO nanorods is closely concerned to the nature of substrates. Also it is indicated that the substrate has strong and important impact on the growth, optical properties, Egand quality of synthesized ZnO nanorods (NRs). The higher transmittance has been observed for ZnO NRs grown over KT substrates and is about (~ 33 %). The average transmittance decreases sharply near UV region at wavelength around 393 nm for ZnO nanorods grown on ITO substrate. However, for PET and KT substrates, the transmittance decreases sharply near visible region around 401nm and 498 nm, respectively. Besides, the ZnO NRs grown on PS substrate have the strong reflectance characteristics after approximately 395 nm, and then decreases in the wavelength range of 410 nm to 700 nm. On the other hand, the strong reflectance property of ZnO NRs grown on Si substrate is observed at 400 nm.  Also the minimum and maximum Egare obtained for ZnO nanorods that fabricated on the KT substrate and porous silicon substrate, respectively.


Author(s):  
Hasan A. Hadi

In this paper, formation of a nanostructure semi transparence fluoride tin oxides (FTO) by spray pyrolysis technique on porous silicon PS layer. Porous silicon PS layer was prepared by anodization of p-type silicon wafers to fabricate of the UV- Visible Fluoride-doped tin oxide /Porous silicon /p-Si heterojunction photodetector. Optical properties of FTO thin films were measured. The optical band gap of 3.77 eV for SnO2:film was deduced. From (I-V) and (C-V) measurements, the barrier height for FTO/PS diode was of 0.77 eV, and the built in voltage , which was of 0.95 V. External quantum efficiency was 55 % at 500 nm which corresponding to peak responsivity of 1.15 A/W at 1 V bias. The PS band gap in the vicinity of PS/c-Si heterojunction was 1.38 eV.


1979 ◽  
Vol 76 ◽  
pp. 273-276 ◽  
Author(s):  
R. Brouillard ◽  
B. Delaporte ◽  
J. M. EL Hage Chahine ◽  
J. E. Dubois
Keyword(s):  

1993 ◽  
Vol 03 (C5) ◽  
pp. 355-358 ◽  
Author(s):  
G. FISHMAN ◽  
R. ROMESTAIN ◽  
J. C. VIAL

1977 ◽  
Vol 38 (10) ◽  
pp. 1293-1299 ◽  
Author(s):  
U. Giorgianni ◽  
G. Mondio ◽  
P. Perillo ◽  
G. Saitta ◽  
G. Vermiglio
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document