Molecular dynamics simulations of stress induced by energetic particle bombardment in Mo thin films

Materialia ◽  
2021 ◽  
pp. 101043
Author(s):  
Meng Zhang ◽  
Zhaoxia Rao ◽  
Kyung-Suk Kim ◽  
Yue Qi ◽  
Liang Fang ◽  
...  
2009 ◽  
Vol 311 (16) ◽  
pp. 4034-4043 ◽  
Author(s):  
Neyda Baguer ◽  
Violeta Georgieva ◽  
Lazaro Calderin ◽  
Ilian T. Todorov ◽  
Sake Van Gils ◽  
...  

2016 ◽  
Vol 18 (12) ◽  
pp. 8730-8738 ◽  
Author(s):  
Nerea Epelde-Elezcano ◽  
Virginia Martínez-Martínez ◽  
Eduardo Duque-Redondo ◽  
Inés Temiño ◽  
Hegoi Manzano ◽  
...  

The aggregation process of pyronin Y (PY) dye into thin films of different smectite clays, LAPONITE® and saponite, is deeply studied by means of electronic absorption and fluorescence spectroscopy and by molecular dynamics simulations.


2001 ◽  
Vol 677 ◽  
Author(s):  
W. C. Liu ◽  
Y. X. Wang ◽  
C. H. Woo ◽  
Hanchen Huang

ABSTRACTIn this paper we present three-dimensional molecular dynamics simulations of dislocation nucleation and propagation during thin film deposition. Aiming to identify mechanisms of dislocation nucleation in polycrystalline thin films, we choose the film material to be the same as the substrate – which is stressed. Tungsten and aluminum are taken as representatives of BCC and FCC metals, respectively, in the molecular dynamics simulations. Our studies show that both glissile and sessile dislocations are nucleated during the deposition, and surface steps are preferential nucleation sites of dislocations. Further, the results indicate that dislocations nucleated on slip systems with large Schmid factors more likely survive and propagate into the film. When a glissile dislocation is nucleated, it propagates much faster horizontally than vertically into the film. The mechanisms and criteria of dislocation nucleation are essential to the implementation of the atomistic simulator ADEPT.


Sign in / Sign up

Export Citation Format

Share Document