scholarly journals Hedging and pricing early-exercise options with complex fourier series expansion

2020 ◽  
Vol 54 ◽  
pp. 100973 ◽  
Author(s):  
Tat Lung (Ron) Chan
2021 ◽  
Author(s):  
Alvin Wong

This research developed a numerical method that solves complicated fluid flow problems without requiring end-user expertise with the solver. This method is capable of obtaining a spatially accurate solution in the same time or better as a skilled user with a conventional solver. An explicit preconditioned multigrid solver was used in this research with a multistage relaxation method. The prosposed method utilizies a database with optimized relaxation method parameters for different local flow and mesh conditions. The parameters are optimized for the relaxation such that the error modes in a complex Fourier series expansion of the residual can be quickly reduced. The convergence time and iteration count of this method was compared against the same solver using default input values, as well as a pre-optimized solver, to simulate a skilled user for various geometries. Improvements in both comparisons were demonstrated.


2021 ◽  
Author(s):  
Alvin Wong

This research developed a numerical method that solves complicated fluid flow problems without requiring end-user expertise with the solver. This method is capable of obtaining a spatially accurate solution in the same time or better as a skilled user with a conventional solver. An explicit preconditioned multigrid solver was used in this research with a multistage relaxation method. The prosposed method utilizies a database with optimized relaxation method parameters for different local flow and mesh conditions. The parameters are optimized for the relaxation such that the error modes in a complex Fourier series expansion of the residual can be quickly reduced. The convergence time and iteration count of this method was compared against the same solver using default input values, as well as a pre-optimized solver, to simulate a skilled user for various geometries. Improvements in both comparisons were demonstrated.


1995 ◽  
Vol 02 (04) ◽  
pp. 489-494 ◽  
Author(s):  
E.E. MOLA ◽  
A.G. APPIGNANESSI ◽  
J.L. VICENTE ◽  
L. VAZQUEZ ◽  
R.C. SALVAREZZA ◽  
...  

The model for the angular orientational energy (AOE) has been extended to hexagonal submonolayer domains of Ag electrodeposited at a constant overpotential on a C(0001) surface. These domains which are characterized by an epitaxy angle θ=15±5° and an Ag−Ag distance d Ag−Ag =0.330± 0.016 nm, can be considered as precursors of 3D Ag crystal formation, according to a Volmer-Weber type mechanism. Calculations are based upon a simple Hamiltonian evaluated by introducing the concept of the commensurable unit cell. A Fourier series expansion for the substrate potential was used. Results from the model predict the existence of a commensurable cell in agreement with the experimental data derived from STM imaging.


Sign in / Sign up

Export Citation Format

Share Document