Functional lipid polymeric nanoparticles for oral drug delivery: Rapid mucus penetration and improved cell entry and cellular transport

2019 ◽  
Vol 21 ◽  
pp. 102075 ◽  
Author(s):  
Ying Liu ◽  
Zifei Jiang ◽  
Xuefeng Hou ◽  
Xingmei Xie ◽  
Jiangpei Shi ◽  
...  
Author(s):  
BITOPAN BAISHYA ◽  
SHEIKH SOFIUR RAHMAN ◽  
DAMANBHALANG RYNJAH ◽  
KAMALLOCHAN BARMAN ◽  
SARANGA SHEKHAR BORDOLOI ◽  
...  

Among various routes of drug delivery, Oral administration is the most convenient route because of its high patient compliance. Although oral drug delivery is effective for drugs with high aqueous solubility and epithelial permeability; however for poorly aqueous soluble drug the membrane permeability, chemical, and enzymatic stability of drugs are the major limitations in successful oral drug delivery. Almost 70% of the new drug candidates which shows poor bioavailability, the antihypertensive drugs are among those. Novel drug delivery systems are available in many areas to overcome the problems associated with hydrophobic drugs and the nanotechnology-based drug delivery system is the most potential to beat the challenges related to the oral route of administration with some important advantages such as the colloidal size, biocompatibility, lowered dose size, reduced toxicity, patient compliance and drug targeting. The foremost common nanotechnology-based strategies utilized in the development of delivery systems are nano-emulsions, nano-suspensions, dendrimers, micelles, liposomes, solid lipid nanoparticles, polymeric nanoparticles, carbon nanotubes, Self-Nano-emulsifying Drug Delivery System, proliposomes, nano-crystals, and so forth, which give controlled, sustained, and targeted drug delivery. The appliance of those systems within the treatment of hypertension continues to broaden. This review focuses on various nano-carriers available in oral drug administration for improving solubility profile, dissolution, and consequently bioavailability of hydrophobic antihypertensive drugs.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Abdalrahim F. A. Aisha ◽  
Amin Malik Shah Abdulmajid ◽  
Zhari Ismail ◽  
Salman A. Alrokayan ◽  
Khalid M. Abu-Salah

Xanthones are a group of oxygenated heterocyclic compounds with anticancer properties, but poor aqueous solubility and low oral bioavailability hinder their therapeutic application. This study sought to prepare a xanthones extract (81%  α-mangostin and 16%  γ-mangostin) in polymeric nanoparticles and to investigate its intracellular delivery and cytotoxicity toward colon cancer cells. The nanoparticles were prepared in Eudragit RL100 and Eudragit RS100 by the nanoprecipitation method at drug loading and entrapment efficiency of 20% and >95%, respectively. Freeze-drying of bulk nanoparticle solutions, using glucose or sucrose as cryoprotectants, allowed the collection of nanoparticles at >95% yield. Solubility of the xanthones extract was improved from 0.1 µg/mL to 1250 µg/mL. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) of the freeze-dried final formulation showed the presence of cationic round nanoparticles, with particle size in the range of 32–130 nm. Scanning electron microscopy (SEM) showed the presence of nanospheres, and Fourier transform infrared (FTIR) spectroscopy indicated intermolecular interaction of xanthones with Eudragit polymers. Cellular uptake of nanoparticles was mediated via endocytosis and indicated intracellular delivery of xanthones associated with potent cytotoxicity (median inhibitory concentration26.3±0.22 µg/mL). Presented results suggest that cationic nanoparticles of xanthones may provide a novel oral drug delivery system for chemoprevention or treatment of intestinal and colon tumors.


2005 ◽  
Vol 1 (3) ◽  
pp. 235-258 ◽  
Author(s):  
V. Bhardwaj ◽  
S. Hariharan ◽  
I. Bala ◽  
A. Lamprecht ◽  
N. Kumar ◽  
...  

Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.


2015 ◽  
Vol 21 (15) ◽  
pp. 2021-2036 ◽  
Author(s):  
Himani Kapahi ◽  
Nikhat Khan ◽  
Ankur Bhardwaj ◽  
Neeraj Mishra

2012 ◽  
Vol 9 (2) ◽  
pp. 213-217 ◽  
Author(s):  
Mehdi Rahimi ◽  
Hamid Mobedi ◽  
Aliasghar Behnamghader ◽  
Alireza Nateghi Baygi ◽  
Houri Mivehchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document