scholarly journals Development of Polymeric Nanoparticles ofGarcinia mangostanaXanthones in Eudragit RL100/RS100 for Anti-Colon Cancer Drug Delivery

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Abdalrahim F. A. Aisha ◽  
Amin Malik Shah Abdulmajid ◽  
Zhari Ismail ◽  
Salman A. Alrokayan ◽  
Khalid M. Abu-Salah

Xanthones are a group of oxygenated heterocyclic compounds with anticancer properties, but poor aqueous solubility and low oral bioavailability hinder their therapeutic application. This study sought to prepare a xanthones extract (81%  α-mangostin and 16%  γ-mangostin) in polymeric nanoparticles and to investigate its intracellular delivery and cytotoxicity toward colon cancer cells. The nanoparticles were prepared in Eudragit RL100 and Eudragit RS100 by the nanoprecipitation method at drug loading and entrapment efficiency of 20% and >95%, respectively. Freeze-drying of bulk nanoparticle solutions, using glucose or sucrose as cryoprotectants, allowed the collection of nanoparticles at >95% yield. Solubility of the xanthones extract was improved from 0.1 µg/mL to 1250 µg/mL. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) of the freeze-dried final formulation showed the presence of cationic round nanoparticles, with particle size in the range of 32–130 nm. Scanning electron microscopy (SEM) showed the presence of nanospheres, and Fourier transform infrared (FTIR) spectroscopy indicated intermolecular interaction of xanthones with Eudragit polymers. Cellular uptake of nanoparticles was mediated via endocytosis and indicated intracellular delivery of xanthones associated with potent cytotoxicity (median inhibitory concentration26.3±0.22 µg/mL). Presented results suggest that cationic nanoparticles of xanthones may provide a novel oral drug delivery system for chemoprevention or treatment of intestinal and colon tumors.

2012 ◽  
Vol 129 (2) ◽  
pp. 714-720 ◽  
Author(s):  
Yichao Wang ◽  
Puwang Li ◽  
Zheng Peng ◽  
Feng Hua She ◽  
Ling Xue Kong

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Manisha Pandey ◽  
Mohd Cairul Iqbal Mohd Amin ◽  
Naveed Ahmad ◽  
Muhammad Mustafa Abeer

This study evaluated the effect of solubilized and dispersed bacterial cellulose (BC) on the physicochemical characteristics and drug release profile of hydrogels synthesized using biopolymers. Superabsorbent hydrogels were synthesized by graft polymerization of acrylamide on BC solubilized in an NaOH/urea solvent system and on dispersed BC by usingN,N′-methylenebisacrylamide as a crosslinker under microwave irradiation. Fourier transform infrared spectroscopy analysis of the resulting hydrogels confirmed the grafting, and an X-ray diffraction pattern showed a decrease in the crystallinity of BC after the grafting process. The hydrogels exhibited pH and ionic responsive swelling behavior, with hydrogels prepared using solubilized BC (SH) having higher swelling ratios. Furthermore, compared to the hydrogels synthesized using dispersed BC, the hydrogels synthesized using solubilized BC showed higher porosity, drug loading efficiency, and release. These results suggest the superiority of the hydrogels prepared using solubilized BC and that they should be explored further for oral drug delivery.


Author(s):  
BITOPAN BAISHYA ◽  
SHEIKH SOFIUR RAHMAN ◽  
DAMANBHALANG RYNJAH ◽  
KAMALLOCHAN BARMAN ◽  
SARANGA SHEKHAR BORDOLOI ◽  
...  

Among various routes of drug delivery, Oral administration is the most convenient route because of its high patient compliance. Although oral drug delivery is effective for drugs with high aqueous solubility and epithelial permeability; however for poorly aqueous soluble drug the membrane permeability, chemical, and enzymatic stability of drugs are the major limitations in successful oral drug delivery. Almost 70% of the new drug candidates which shows poor bioavailability, the antihypertensive drugs are among those. Novel drug delivery systems are available in many areas to overcome the problems associated with hydrophobic drugs and the nanotechnology-based drug delivery system is the most potential to beat the challenges related to the oral route of administration with some important advantages such as the colloidal size, biocompatibility, lowered dose size, reduced toxicity, patient compliance and drug targeting. The foremost common nanotechnology-based strategies utilized in the development of delivery systems are nano-emulsions, nano-suspensions, dendrimers, micelles, liposomes, solid lipid nanoparticles, polymeric nanoparticles, carbon nanotubes, Self-Nano-emulsifying Drug Delivery System, proliposomes, nano-crystals, and so forth, which give controlled, sustained, and targeted drug delivery. The appliance of those systems within the treatment of hypertension continues to broaden. This review focuses on various nano-carriers available in oral drug administration for improving solubility profile, dissolution, and consequently bioavailability of hydrophobic antihypertensive drugs.


Author(s):  
Yanan Shi ◽  
Shiqi Guo ◽  
Yanzi Liang ◽  
Lanze Liu ◽  
Aiping Wang ◽  
...  

Background: Increasing the bioavailability of peptide or protein drugs has always been an essential topic in pharmacy. Milk exosomes as a carrier for oral drug delivery systems have begun to attract attention in recent years. The application of oral milk exosomes carriers to peptide drugs such as liraglutide is worth trying. Objective: Milk-derived exosomes are used in this study to encapsulate the GLP-1 receptor agonist liraglutide. It also explored the feasibility of using this drug delivery system for oral biomolecules delivery in the future. Methods: The size and morphology of milk exosomes were characterized. The gastrointestinal stability of milk exosomes was evaluated in a dialysis bag. The cellular uptake of milk exosomes in an intestinal cell was observed. Six drug loading methods have been evaluated and compared preliminarily, and they are the incubation method, sonication method, extrusion method, freeze-thaw cycles method, saponin-assisted method, and electroporation method. Results: As demonstrated in this study, milk exosomes showed significant stability in the gastrointestinal environment and excellent affinity with intestinal cells, indicating their unique benefits used for oral drug delivery. Effective drug loading method for exosomes is challenging. Among the six drug loading methods used in this study, the liraglutide-Exo prepared by the extrusion method obtained the most significant drug load, which was 2.45 times the direct incubation method. The liraglutide-Exo obtained by the freeze-thaw cycles method has the slightest morphological change. Conclusion: The study showed milk exosome-based oral drug delivery systems are promising.


2021 ◽  
Author(s):  
Shilpa Raval ◽  
Parva Jani ◽  
Pravin Patil ◽  
Parth Thakkar ◽  
Krutika Sawant

Aim: The work describes enhanced bioavailability of paliperidone palmitate through transdermal delivery using nanostructured lipid carriers (NLC). Materials & methods: NLCs were formulated by nanoprecipitation method followed by incorporation in transdermal patch and physicochemical characterization. Results: NLCs showed high percentage entrapment efficiency of 83.44 ± 0.8%, drug loading of 24.75 ± 1.10% (w/w), particle size of 173.8 ± 3.25 nm, polydispersity index of 0.143 ± 0.05 and zeta potential of -15.9 ± 0.75 mV. In vitro and ex vivo studies indicated zero-order controlled drug release from NLCs and transdermal patch up to 48 h. Pharmacokinetic studies indicated 1.76-fold enhanced bioavailability by transdermal route as compared with oral drug delivery. Conclusion: From the results, it was concluded that drug-loaded NLCs-transdermal patch is promising drug delivery system for poorly bioavailable drugs.


2020 ◽  
Vol 27 (2) ◽  
pp. 16-21
Author(s):  
H. Musa ◽  
Y. Musa ◽  
M. Suleiman

In this research, starch was extracted from fresh sweet potato and was used to prepare starch-g-acrylamide hydrogel using free radical polymerization method with potassium per sulphate and N’N-Methylene bisacrylamide as initiator and cross-linker, respectively. The swelling capacity and pH sensitivity of the synthesized hydrogel were investigated in solutions of various pH (1-12). The drug loading and release experiment was also carried out using promethazine (PMZ) as the model drug at 25oC and 37oC, respectively while the release study was carried out in an enzyme-free simulated gastric intestinal fluid (SGF) and simulated intestinal fluid (SIF). The result showed a 905% swelling at pH 11, suggesting increased swelling capacity at higher pH values. Drug loading result indicated 99% of the drug was entrapped by the hydrogel as confirmed by UV-visible spectrophotometry. SIF and SGF Simulation indicated a 24% and 9% drug release for the first ten hours. At the end of 48 hours the release was 96% and 89%, respectively indicating the hydrogel released more promethazine in SIF than in SGF. The results obtained in this work suggest that starch-graft-acrylamide hydrogel is a potential vehicle for oral drug delivery. Keywords: Starch, Acrylamide, Hydrogel, Drug delivery.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 38 ◽  
Author(s):  
Hock Ing Chiu ◽  
Asila Dinie Ayub ◽  
Siti Nur Aishah Mat Yusuf ◽  
Noorfatimah Yahaya ◽  
Erazuliana Abd Kadir ◽  
...  

In this study, fluorescein-labelled wheat germ agglutinin (fWGA)-conjugated disulfide cross-linked sodium alginate nanoparticles were developed to specifically target docetaxel (DTX) to colon cancer cells. Different amounts of 3-mercaptopropionic acid (MPA) were covalently attached to sodium alginate to form thiolated sodium alginate (MPA1–5). These polymers were then self-assembled and air-oxidised to form disulfide cross-linked nanoparticles (MP1–5) under sonication. DTX was successfully loaded into the resulting MP1–5 to form DTX-loaded nanoparticles (DMP1–5). DMP2 had the highest loading efficiency (17.8%), thus was chosen for fWGA surface conjugation to form fWGA-conjugated nanoparticles (fDMP2) with a conjugation efficiency of 14.1%. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses showed spherical nanoparticles, and an in vitro drug release study recorded a cumulative drug release of 48.6%. Dynamic light scattering (DLS) analysis revealed a mean diameter (MD) of 289 nm with a polydispersity index (PDI) of 0.3 and a zeta potential of −2.2 mV for fDMP2. HT-29 human colon cancer cells treated with fDMP2 showed lower viability than that of L929 mouse fibroblast cells. These results indicate that fDMP2 was efficiently taken up by HT-29 cells (29.9%). Fluorescence and confocal imaging analyses also showed possible internalisation of nanoparticles by HT-29 cells. In conclusion, fDMP2 shows promise as a DTX carrier for colon cancer drug delivery.


Sign in / Sign up

Export Citation Format

Share Document