scholarly journals Magnetically levitated-triboelectric nanogenerator as a self-powered vibration monitoring sensor

Nano Energy ◽  
2017 ◽  
Vol 33 ◽  
pp. 88-97 ◽  
Author(s):  
Zengxing Zhang ◽  
Jian He ◽  
Tao Wen ◽  
Cong Zhai ◽  
Jianqiang Han ◽  
...  
ACS Nano ◽  
2017 ◽  
Vol 11 (7) ◽  
pp. 7440-7446 ◽  
Author(s):  
Binbin Zhang ◽  
Lei Zhang ◽  
Weili Deng ◽  
Long Jin ◽  
Fengjun Chun ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2763
Author(s):  
Xiaotao Han ◽  
Qiyuan Zhang ◽  
Junbin Yu ◽  
Jinsha Song ◽  
Zhengyang Li ◽  
...  

In this paper, we designed a triboelectric acceleration sensor with excellent multiple parameters. To more easily detect weak vibrations, the sensor was founded on a multilayer suspension structure. To effectively improve the electrical properties of the sensor, a surface roughening and internal doping friction film, which was refined with a room temperature vulcanized silicone rubber (RTV) and some thermoplastic polyurethanes (TPU) powder in a certain proportion, was integrated into the structure. It was found that the optimization of the RTV film increases the open circuit voltage and short circuit current of the triboelectric nanogenerator (TENG) by 223% and 227%, respectively. When the external vibration acceleration is less than 4 m/s2, the sensitivity and linearity are 1.996 V/(m/s2) and 0.999, respectively. Additionally, when it is in the range between 4 m/s2 and 15 m/s2, those are 23.082 V/(m/s2) and 0.975, respectively. Furthermore, the sensor was placed in a simulated truck vibration environment, and its self-powered monitoring ability validated by experiments in real time. The results show that the designed sensor has strong practical value in the field of monitoring mechanical vibration acceleration.


Nano Energy ◽  
2021 ◽  
Vol 84 ◽  
pp. 105887
Author(s):  
Yuankai Zhou ◽  
Maoliang Shen ◽  
Xin Cui ◽  
Yicheng Shao ◽  
Lijie Li ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengxiao Chen ◽  
Zhe Wang ◽  
Qichong Zhang ◽  
Zhixun Wang ◽  
Wei Liu ◽  
...  

AbstractThe well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.


Nano Energy ◽  
2021 ◽  
pp. 105964
Author(s):  
Sugato Hajra ◽  
Venkateswaran Vivekananthan ◽  
Manisha Sahu ◽  
Gaurav Khandelwal ◽  
Nirmal Prashanth Maria Joseph Raj ◽  
...  

Nano Energy ◽  
2021 ◽  
Vol 84 ◽  
pp. 105918
Author(s):  
Yongyun Mao ◽  
Yong Li ◽  
Jiyang Xie ◽  
Huan Liu ◽  
Changjin Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document