Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion

Nano Energy ◽  
2019 ◽  
Vol 56 ◽  
pp. 400-410 ◽  
Author(s):  
Kequan Xia ◽  
Zhiyuan Zhu ◽  
Hongze Zhang ◽  
Chaolin Du ◽  
Jiangming Fu ◽  
...  
Author(s):  
Saeed Ahmed Khan ◽  
Shamsuddin Lakho ◽  
Ahmed Ali ◽  
Abdul Qadir Rahimoon ◽  
Izhar Hussain Memon ◽  
...  

Most of the emerging electronic devices are wearable in nature. However, the frequent changing or charging the battery of all wearable devices is the big challenge. Interestingly, with those wearable devices that are directly associated with the human body, the body can be used in transferring or generating energy in a number of techniques. One technique is triboelectric nanogenerators (TENG). This chapter covers different applications where the human body is used as a triboelectric layer and as a sensor. Wearable TENG has been discussed in detail based on four basic modes that could be used to monitor the human health. In all the discussions, the main focus is to power the wearable healthcare internet of things (IoT) sensor through human body motion based on self-powered TENG. The IoT sensors-based wearable devices related to human body can be used to develop smart body temperature sensors, pressure sensors, smart textiles, and fitness tracking sensors.


Nano Energy ◽  
2018 ◽  
Vol 50 ◽  
pp. 571-580 ◽  
Author(s):  
Kequan Xia ◽  
Zhiyuan Zhu ◽  
Hongze Zhang ◽  
Chaolin Du ◽  
Zhiwei Xu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanjun Ryu ◽  
Hyun-moon Park ◽  
Moo-Kang Kim ◽  
Bosung Kim ◽  
Hyoun Seok Myoung ◽  
...  

AbstractSelf-powered implantable devices have the potential to extend device operation time inside the body and reduce the necessity for high-risk repeated surgery. Without the technological innovation of in vivo energy harvesters driven by biomechanical energy, energy harvesters are insufficient and inconvenient to power titanium-packaged implantable medical devices. Here, we report on a commercial coin battery-sized high-performance inertia-driven triboelectric nanogenerator (I-TENG) based on body motion and gravity. We demonstrate that the enclosed five-stacked I-TENG converts mechanical energy into electricity at 4.9 μW/cm3 (root-mean-square output). In a preclinical test, we show that the device successfully harvests energy using real-time output voltage data monitored via Bluetooth and demonstrate the ability to charge a lithium-ion battery. Furthermore, we successfully integrate a cardiac pacemaker with the I-TENG, and confirm the ventricle pacing and sensing operation mode of the self-rechargeable cardiac pacemaker system. This proof-of-concept device may lead to the development of new self-rechargeable implantable medical devices.


Nanoscale ◽  
2020 ◽  
Author(s):  
Congxi Huang ◽  
Guorui Chen ◽  
Ardo Nashalian ◽  
Jun Chen

Chemical sensors allow for continuous detection and analysis of underexplored molecules on the human body and the surroundings, which hold bright applications on human healthcare and environmental protection. With the...


2015 ◽  
Vol 25 (24) ◽  
pp. 3688-3696 ◽  
Author(s):  
Fang Yi ◽  
Long Lin ◽  
Simiao Niu ◽  
Po Kang Yang ◽  
Zhaona Wang ◽  
...  

2013 ◽  
Author(s):  
Yuichiro Hirose ◽  
Mitsuru Enomoto ◽  
Takashi Sasaki ◽  
Eiichi Yasuda ◽  
Masatoshi Hada

Sensors ◽  
2012 ◽  
Vol 12 (5) ◽  
pp. 5791-5814 ◽  
Author(s):  
Alberto Olivares ◽  
Javier Ramírez ◽  
Juan M. Górriz ◽  
Gonzalo Olivares ◽  
Miguel Damas

Sign in / Sign up

Export Citation Format

Share Document