Diversity of the genes involved in Algerian families with hearing loss identified by whole exome sequencing

2018 ◽  
Vol 44 ◽  
pp. S95
Author(s):  
M. Dahmani ◽  
F. Ammar Khodja ◽  
C. Bonnet ◽  
D. Djennaoui ◽  
S. Ouhab ◽  
...  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Somayeh Khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh-Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods. Methods This study was a report on a research study of two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects. Conclusion In this study, whole exome sequencing were used as a first approach strategy to identify the two novel variants in MYO15A in two Iranian families with ARNSHL.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109178 ◽  
Author(s):  
Jie Qing ◽  
Denise Yan ◽  
Yuan Zhou ◽  
Qiong Liu ◽  
Weijing Wu ◽  
...  

2020 ◽  
Author(s):  
Pengfei Liang ◽  
Fengping Chen ◽  
Shujuan Wang ◽  
Qiong Li ◽  
Wei Li ◽  
...  

Abstract Background: Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with >152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families.Methods: After excluding the mutations in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents.Results: Biallelic mutations were identified in all deaf patients. Among these six families, 10 potentially causative mutations, including 3 reported and 7 novel mutations, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. The mutations in MYO15A were frequent with 7/10 candidate variants. Sanger sequencing confirmed that these mutations segregated with the hearing loss of each family.Conclusions: Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the mutation spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.


2015 ◽  
Vol 97 ◽  
Author(s):  
TAHIR ATIK ◽  
GUNEY BADEMCI ◽  
OSCAR DIAZ-HORTA ◽  
SUSAN H. BLANTON ◽  
MUSTAFA TEKIN

SummaryNext-generation sequencing (NGS) technologies have played a central role in the genetic revolution. These technologies, especially whole-exome sequencing, have become the primary tool of geneticists to identify the causative DNA variants in Mendelian disorders, including hereditary deafness. Current research estimates that 1% of all human genes have a function in hearing. To date, mutations in over 80 genes have been reported to cause nonsyndromic hearing loss (NSHL). Strikingly, more than a quarter of all known genes related to NSHL were discovered in the past 5 years via NGS technologies. In this article, we review recent developments in the usage of NGS for hereditary deafness, with an emphasis on whole-exome sequencing.


2019 ◽  
Author(s):  
Yingjie Zhou ◽  
Muhammad Tariq ◽  
Sijie He ◽  
Uzma Abdullah ◽  
Jianguo Zhang ◽  
...  

Abstract Background: Hearing loss is the most common sensory defect that affects over 6% of the population worldwide. About 50%-60% of hearing loss patients are attributed to genetic causes. Currently more than 100 genes have been reported to cause non-syndromic hearing loss. It’s possible and efficient to screen all potential disease-causing genes for hereditary hearing loss by whole exome sequencing (WES).Methods: We collected 5 consanguineous pedigrees with hearing loss from Pakistan and applied WES on selected patients for each pedigree, followed by bioinformatics analysis and Sanger validation to identify the causing genes for them.Results: Variants in 7 genes were identified and validated in these pedigrees. We identified single candidate for 3 pedigrees, which were GIPC3 (c.937T>C), LOXHD1 (c.2935G>A) and TMPRSS3 (c.941T>C). And the remaining 2 pedigrees each contained two candidates, which were TECTA (c.4045G>A) and MYO15A (c.3310G>T and c.1705G>C) for one pedigree and DFNB59 (c.494G>A) and TRIOBP (c.1952C>T) for the other pedigree. The candidates were validated in all available samples by Sanger sequencing.Conclusion: The candidate variants in hearing loss genes were validated to be co-segregated in the pedigrees, which may indicate the reasons for such patients. We also suggested that WES may be suitable strategy for hearing loss gene screening in clinical detection.


2020 ◽  
Author(s):  
Yingjie Zhou ◽  
Muhammad Tariq ◽  
Sijie He(Former Corresponding Author) ◽  
Uzma Abdullah ◽  
Jianguo Zhang(New Corresponding Author) ◽  
...  

Abstract Background Hearing loss is the most common sensory defect that affects over 6% of the population worldwide. About 50%-60% of hearing loss patients are attributed to genetic causes. Currently more than 100 genes have been reported to cause non-syndromic hearing loss. It’s possible and efficient to screen all potential disease-causing genes for hereditary hearing loss by whole exome sequencing (WES). Methods We collected 5 consanguineous pedigrees with hearing loss from Pakistan and applied WES on selected patients for each pedigree, followed by bioinformatics analysis and Sanger validation to identify the causing genes for them. Results Variants in 7 genes were identified and validated in these pedigrees. We identified single candidate for 3 pedigrees, which were GIPC3 (c.937T>C), LOXHD1 (c.2935G>A) and TMPRSS3 (c.941T>C). And the remaining 2 pedigrees each contained two candidates, which were TECTA (c.4045G>A) and MYO15A (c.3310G>T and c.1705G>C) for one pedigree and DFNB59 (c.494G>A) and TRIOBP (c.1952C>T) for the other pedigree. The candidates were validated in all available samples by Sanger sequencing. Conclusion The candidate variants in hearing loss genes were validated to be co-segregated in the pedigrees, which may indicate the reasons for such patients. We also suggested that WES may be suitable strategy for hearing loss screening in clinical detection.


Mitochondrion ◽  
2019 ◽  
Vol 46 ◽  
pp. 321-325 ◽  
Author(s):  
Somayeh Khatami ◽  
Hassan Rokni-Zadeh ◽  
Neda Mohsen-Pour ◽  
Alireza Biglari ◽  
Majid Changi-Ashtiani ◽  
...  

2021 ◽  
Author(s):  
Stephanie L Rouse ◽  
Michelle M Florentine ◽  
Emily Taketa ◽  
Dylan K Chan

Abstract Racial/ethnic disparities in the diagnostic efficacy of genetic testing for hearing loss has been described. These disparities may relate to differences in variant classification between different racial/ethnic groups, which may in turn derive from disparate representation of these groups in the published literature. We sought to quantify racial/ethnic disparities in the published literature on the human genetics of hearing loss. We conducted a search of PubMed for articles describing single-gene, multiple-gene, or whole-exome sequencing for individuals with sensorineural hearing loss. Data on the populations studied, including race/ethnicity and/or region of origin, subjects tested, and method of testing, were extracted. 1,355 unique populations representing 311,092 subjects from 1,165 studies were included. Overall, White and Asian populations and subjects were equivalently represented, but Latinx, Black, and Native American/Hawaiian groups were significantly underrepresented; over 96% of all subjects in the published literature were White or Asian. Within racial/ethnic groups, the majority of subjects derived from a small subset of countries. The observed racial/ethnic disparity was greater for multiple-gene and whole-exome sequencing than for single-gene sequencing. These findings illustrate the large disparity in published literature on the genetics of hearing loss, and demonstrate the need for increased representation of Latinx, Black, and Native American populations.


Sign in / Sign up

Export Citation Format

Share Document