An automatic welding defect location algorithm based on deep learning

2021 ◽  
Vol 120 ◽  
pp. 102435
Author(s):  
Lei Yang ◽  
Huaixin Wang ◽  
Benyan Huo ◽  
Fangyuan Li ◽  
Yanhong Liu
2019 ◽  
Vol 66 (12) ◽  
pp. 9641-9650 ◽  
Author(s):  
Paolo Sassi ◽  
Paolo Tripicchio ◽  
Carlo Alberto Avizzano

2021 ◽  
Vol 12 (5) ◽  
pp. 390-394
Author(s):  
Distun Stephen ◽  
Dr.Lalu P.P

Weld defect identification from radiographic images is a crucial task in the industry which requires trained human experts and enough specialists for performing timely inspections. This paper proposes a deep learning based approach to identify different weld defects automatically from radiographic images. To employ this a dataset containing 200 radiographic images labelled for four types of welding defect- gas pore, cluster porosity, crack and tungsten inclusion is developed. Then a Convolutional Neural Network model is designed and trained using this database.


2020 ◽  
pp. 147592172095959
Author(s):  
Honglei Chen ◽  
Zenghua Liu ◽  
Bin Wu ◽  
Cunfu He

Imaging algorithms for visualization of defects play a significant role in Lamb wave–based research of nondestructive testing and structural health monitoring. In classical algorithms, the position or distribution of defects is located by mapping the amplitude or phase information of signals from the time domain to every discrete spatial grid of the structure. It is time-consuming. In this study, the diversity, statistical, and fuzzy characteristics of the elliptic imaging algorithm are analyzed first; then, an intelligent defect location algorithm is proposed based on the evolutionary strategy and the K-means algorithm. The position of defects can be identified by observing the distribution of individuals. There are six parts in the proposed algorithm, including the data structure design, adaptive population screening, adaptive population reproduction, diversity maintenance mechanism, and cutoff criterion. Considering the statistical and fuzzy characteristics in the detection, several specific input parameters are defined in our algorithm, such as the distance-dependent screening threshold, path-dependent residual vector, and path-independent residual. To maintain the diversity of individuals in the analysis, we have made two adjustments to the evolutionary strategy: one is to optimize the population screening and reproduction steps with the K-means algorithm, and the other is to add a diversity maintenance method into the evolutionary strategy. The effectiveness of the proposed intelligent defect location algorithm is verified by numerical simulations and experiments. Numerical studies indicate that the proposed algorithm has a reliable performance in the detection of defects with different shapes and sizes. In the experimental research, we demonstrate that the efficiency of the proposed algorithm is about 200 times faster than the elliptic imaging algorithm. And the optimum parameter setting of the algorithm is investigated by analyzing the influence of parameter setting on the detection.


2007 ◽  
Vol 10-12 ◽  
pp. 543-547 ◽  
Author(s):  
Ying Yin ◽  
G.Y. Tian ◽  
Guo Fu Yin ◽  
A.M. Luo

Radiography inspection (X-ray or gamma ray) is one of the most commonly used Non-destructive Evaluation (NDE) methods. More and more digital X-ray imaging is used for medical diagnosis, security screening, or industrial inspection, which is important for e-manufacturing. In this paper, we firstly introduced an automatic welding defect inspection system for X-ray image evaluation, defect image database and applications of Artificial Neural Networks (ANNs) for NDE. Then, feature extraction and selection methods are used for defect representation. Seven categories of geometric features were defined and selected to represent characteristics of different kinds of welding defect. Finally, a feed-forward backpropagation neural network is implemented for the purpose of defect classification. The performance of the proposed methods are tested and discussed.


2019 ◽  
Vol 88 (4) ◽  
pp. 230-233
Author(s):  
Akira OKAMOTO ◽  
Keita OZAKI ◽  
Tsuyoshi ASHIDA ◽  
Masatoshi HIDA ◽  
Takayoshi YAMASHITA

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 125929-125938 ◽  
Author(s):  
Feng Duan ◽  
Shifan Yin ◽  
Peipei Song ◽  
Wenkai Zhang ◽  
Chi Zhu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 123
Author(s):  
Gwang-ho Yun ◽  
Sang-jin Oh ◽  
Sung-chul Shin

Welding defects must be inspected to verify that the welds meet the requirements of ship welded joints, and in welding defect inspection, among nondestructive inspections, radiographic inspection is widely applied during the production process. To perform nondestructive inspection, the completed weldment must be transported to the nondestructive inspection station, which is expensive; consequently, automation of welding defect detection is required. Recently, at several processing sites of companies, continuous attempts are being made to combine deep learning to detect defects more accurately. Preprocessing for welding defects in radiographic inspection images should be prioritized to automatically detect welding defects using deep learning during radiographic nondestructive inspection. In this study, by analyzing the pixel values, we developed an image preprocessing method that can integrate the defect features. After maximizing the contrast between the defect and background in radiographic through CLAHE (contrast-limited adaptive histogram equalization), denoising (noise removal), thresholding (threshold processing), and concatenation were sequentially performed. The improvement in detection performance due to preprocessing was verified by comparing the results of the application of the algorithm on raw images, typical preprocessed images, and preprocessed images. The mAP for the training data and test data was 84.9% and 51.2% for the preprocessed image learning model, whereas 82.0% and 43.5% for the typical preprocessed image learning model and 78.0%, 40.8% for the raw image learning model. Object detection algorithm technology is developed every year, and the mAP is improving by approximately 3% to 10%. This study achieved a comparable performance improvement by only preprocessing with data.


2021 ◽  
Vol 15 (2) ◽  
pp. 77
Author(s):  
Agus Probo Sutejo ◽  
Haerul Ahmadi ◽  
Tasih Mulyono

The examination of defects in radiographic films necessitates specialized knowledge, as indicated by an expert radiographer (AR) degree, yet the subjectivity of AR in identifying defects is problematic. To overcome this subjectivity, an automatic welding defect identification is needed. This is executed by using Matlab to create artificial neural networks, which is beneficial for users with the graphical user interface (GUI) feature. One of the breakthroughs in the figure extraction into seven feature vector values is the geometric invariant moment theory. This prevents translation, rotation, and scaling from changing the figure's characteristics. Therefore, a welding defect identification system with a geometric invariant moment was created in the digital radiographic film figure to overcome the reading error by AR. The identification system obtained an accuracy rating of 89.9%.


Sign in / Sign up

Export Citation Format

Share Document