Defect Identification and Classification for Digital X-Ray Images

2007 ◽  
Vol 10-12 ◽  
pp. 543-547 ◽  
Author(s):  
Ying Yin ◽  
G.Y. Tian ◽  
Guo Fu Yin ◽  
A.M. Luo

Radiography inspection (X-ray or gamma ray) is one of the most commonly used Non-destructive Evaluation (NDE) methods. More and more digital X-ray imaging is used for medical diagnosis, security screening, or industrial inspection, which is important for e-manufacturing. In this paper, we firstly introduced an automatic welding defect inspection system for X-ray image evaluation, defect image database and applications of Artificial Neural Networks (ANNs) for NDE. Then, feature extraction and selection methods are used for defect representation. Seven categories of geometric features were defined and selected to represent characteristics of different kinds of welding defect. Finally, a feed-forward backpropagation neural network is implemented for the purpose of defect classification. The performance of the proposed methods are tested and discussed.

2014 ◽  
Vol 70 (3) ◽  
Author(s):  
Yasmin Abdul Wahab ◽  
Ruzairi Abdul Rahim ◽  
Mohd Hafiz Fazlul Rahiman ◽  
Herlina Abdul Rahim ◽  
Suzanna Ridzuan Aw ◽  
...  

The inspection system is crucial to ensure the system is always in a good condition. A technique that can be used for inspection system is process tomography. By promising non-destructive approach; various types of process tomography applied in civil, manufacturing and electrical applications. The purpose of this paper is to review the types of process tomography such as ultrasonic tomography, x-ray tomography, optical tomography, electrical resistance tomography, and electrical impedance tomography that had been applied to the inspection system. Variety techniques of inspection based on those sensors briefly discussed in this paper. The result showed that the process tomography expanded tremendously in the inspection system. Finally, a potential future research on the inspection system in the civil application proposed in this paper.


2019 ◽  
Vol 489 (3) ◽  
pp. 4300-4310 ◽  
Author(s):  
A Sezer ◽  
T Ergin ◽  
R Yamazaki ◽  
H Sano ◽  
Y Fukui

ABSTRACT We present the results from the Suzaku X-ray Imaging Spectrometer observation of the mixed-morphology supernova remnant (SNR) HB9 (G160.9+2.6). We discovered recombining plasma (RP) in the western Suzaku observation region and the spectra here are well described by a model having collisional ionization equilibrium (CIE) and RP components. On the other hand, the X-ray spectra from the eastern Suzaku observation region are best reproduced by the CIE and non-equilibrium ionization model. We discuss possible scenarios to explain the origin of the RP emission based on the observational properties and concluded that the rarefaction scenario is a possible explanation for the existence of RP. In addition, the gamma-ray emission morphology and spectrum within the energy range of 0.2–300 GeV are investigated using 10 yr of data from the Fermi Large Area Telescope (LAT). The gamma-ray morphology of HB9 is best described by the spatial template of radio continuum emission. The spectrum is well fit to a log-parabola function and its detection significance was found to be 25σ. Moreover, a new gamma-ray point source located just outside the south-east region of the SNR’s shell was detected with a significance of 6σ. We also investigated the archival H i and CO data and detected an expanding shell structure in the velocity range of $-10.5$ and $+1.8$ km s−1 that is coinciding with a region of gamma-ray enhancement at the southern rim of the HB9 shell.


2020 ◽  
Vol 14 ◽  
Author(s):  
Hung Tri Tran ◽  
Esther H. R. Tsai ◽  
Amanda J. Lewis ◽  
Tim Moors ◽  
J. G. J. M. Bol ◽  
...  

Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 μm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson’s diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.


1996 ◽  
Author(s):  
F. A. Harrison ◽  
J. E. Grindlay ◽  
N. Gehrels ◽  
C. J. Hailey ◽  
W. A. Mahoney ◽  
...  

2018 ◽  
Vol 13 (3) ◽  
pp. 270-282 ◽  
Author(s):  
Nagaraja Rao ◽  
Brian Ament ◽  
Richard Parmee ◽  
Jonathan Cameron ◽  
Martin Mayo

Sign in / Sign up

Export Citation Format

Share Document