Third-order generalization: A new approach to categorizing higher-order generalization

2008 ◽  
Vol 71 (7-9) ◽  
pp. 1477-1499 ◽  
Author(s):  
Richard Neville
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jehad Alzabut ◽  
Martin Bohner ◽  
Said R. Grace

AbstractIn this paper, new oscillation results for nonlinear third-order difference equations with mixed neutral terms are established. Unlike previously used techniques, which often were based on Riccati transformation and involve limsup or liminf conditions for the oscillation, the main results are obtained by means of a new approach, which is based on a comparison technique. Our new results extend, simplify, and improve existing results in the literature. Two examples with specific values of parameters are offered.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Kun-Wen Wen ◽  
Gen-Qiang Wang ◽  
Sui Sun Cheng

Solutions of quite a few higher-order delay functional differential equations oscillate or converge to zero. In this paper, we obtain several such dichotomous criteria for a class of third-order nonlinear differential equation with impulses.


Author(s):  
Zhiguo Geng ◽  
Huanzhao Lv ◽  
Zhan Xiong ◽  
Yu-Gui Peng ◽  
Zhaojiang Chen ◽  
...  

Abstract The square-root descendants of higher-order topological insulators were proposed recently, whose topological property is inherited from the squared Hamiltonian. Here we present a three-dimensional (3D) square-root-like sonic crystal by stacking the 2D square-root lattice in the normal (z) direction. With the nontrivial intralayer couplings, the opened degeneracy at the K-H direction induces the emergence of multiple acoustic localized modes, i.e., the extended 2D surface states and 1D hinge states, which originate from the square-root nature of the system. The square-root-like higher order topological states can be tunable and designed by optionally removing the cavities at the boundaries. We further propose a third-order topological corner state in the 3D sonic crystal by introducing the staggered interlayer couplings on each square-root layer, which leads to a nontrivial bulk polarization in the z direction. Our work sheds light on the high-dimensional square-root topological materials, and have the potentials in designing advanced functional devices with sound trapping and acoustic sensing.


2020 ◽  
Vol 19 (04) ◽  
pp. 2050038
Author(s):  
Keqiang Dong ◽  
Xiaofang Zhang

The fractional cumulative residual entropy is not only a powerful tool for the analysis of complex system, but also a promising way to analyze time series. In this paper, we present an approach to measure the uncertainty of non-stationary time series named higher-order multiscale fractional cumulative residual entropy. We describe how fractional cumulative residual entropy may be calculated based on second-order, third-order, fourth-order statistical moments and multiscale method. The implementation of higher-order multiscale fractional cumulative residual entropy is illustrated with simulated time series generated by uniform distribution on [0, 1]. Finally, we present the application of higher-order multiscale fractional cumulative residual entropy in logistic map time series and stock markets time series, respectively.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Xiongtao Cao ◽  
Hongxing Hua

Vibroacoustic characteristics of multidirectional stiffened laminated plates with or without compliant layers are explored in the wavenumber and spatial domains with the help of the two-dimensional continuous Fourier transform and discrete inverse fast Fourier transform. Implicit equations of motion for the arbitrary angle ply laminated plates are derived from the three-dimensional higher order and Reddy third order shear deformation plate theories. The expressions of acoustic power of the stiffened laminated plates with or without complaint layers are formulated in the wavenumber domain, which is a significant method to calculate acoustic power of the stiffened plates with multiple sets of cross stiffeners. Vibroacoustic comparisons of the stiffened laminated plates are made in terms of the transverse displacement spectra, forced responses, acoustic power, and input power according to the first order, Reddy third order, and three-dimensional higher order plate theories. Sound reduction profiles of compliant layers are further examined by the theoretical deductions. This study shows the feasibility and high efficiency of the first order and Reddy third order plate theories in the broad frequency range and allows a better understanding the principal mechanisms of acoustic power radiated from multidirectional stiffened laminated composite plates with compliant layers, which has not been adequately addressed in its companion paper. (Cao and Hua, 2012, “Sound Radiation From Shear Deformable Stiffened Laminated Plates With Multiple Compliant Layers,” ASME J. Vib. Acoust., 134(5), p. 051001.)


2016 ◽  
Vol 16 (3) ◽  
pp. 459-474 ◽  
Author(s):  
Rihuan Ke ◽  
Wen Li ◽  
Mingqing Xiao

AbstractStochastic matrices play an important role in the study of probability theory and statistics, and are often used in a variety of modeling problems in economics, biology and operation research. Recently, the study of tensors and their applications became a hot topic in numerical analysis and optimization. In this paper, we focus on studying stochastic tensors and, in particular, we study the extreme points of a set of multi-stochastic tensors. Two necessary and sufficient conditions for a multi-stochastic tensor to be an extreme point are established. These conditions characterize the “generators” of multi-stochastic tensors. An algorithm to search the convex combination of extreme points for an arbitrary given multi-stochastic tensor is developed. Based on our obtained results, some expression properties for third-order and n-dimensional multi-stochastic tensors (${n=3}$ and 4) are derived, and all extreme points of 3-dimensional and 4-dimensional triply-stochastic tensors can be produced in a simple way. As an application, a new approach for the partially filled square problem under the framework of multi-stochastic tensors is given.


2012 ◽  
Vol 04 (01) ◽  
pp. 1250010 ◽  
Author(s):  
V. P. VALLALA ◽  
G. S. PAYETTE ◽  
J. N. REDDY

In this paper, a finite element model for efficient nonlinear analysis of the mechanical response of viscoelastic beams is presented. The principle of virtual work is utilized in conjunction with the third-order beam theory to develop displacement-based, weak-form Galerkin finite element model for both quasi-static and fully-transient analysis. The displacement field is assumed such that the third-order beam theory admits C0 Lagrange interpolation of all dependent variables and the constitutive equation can be that of an isotropic material. Also, higher-order interpolation functions of spectral/hp type are employed to efficiently eliminate numerical locking. The mechanical properties are considered to be linear viscoelastic while the beam may undergo von Kármán nonlinear geometric deformations. The constitutive equations are modeled using Prony exponential series with general n-parameter Kelvin chain as its mechanical analogy for quasi-static cases and a simple two-element Maxwell model for dynamic cases. The fully discretized finite element equations are obtained by approximating the convolution integrals from the viscous part of the constitutive relations using a trapezoidal rule. A two-point recurrence scheme is developed that uses the approximation of relaxation moduli with Prony series. This necessitates the data storage for only the last time step and not for the entire deformation history.


Sign in / Sign up

Export Citation Format

Share Document