A new hybrid artificial neural networks for rainfall–runoff process modeling

2013 ◽  
Vol 121 ◽  
pp. 470-480 ◽  
Author(s):  
Shahrokh Asadi ◽  
Jamal Shahrabi ◽  
Peyman Abbaszadeh ◽  
Shabnam Tabanmehr
2003 ◽  
Vol 7 (5) ◽  
pp. 693-706 ◽  
Author(s):  
E. Gaume ◽  
R. Gosset

Abstract. Recently Feed-Forward Artificial Neural Networks (FNN) have been gaining popularity for stream flow forecasting. However, despite the promising results presented in recent papers, their use is questionable. In theory, their “universal approximator‿ property guarantees that, if a sufficient number of neurons is selected, good performance of the models for interpolation purposes can be achieved. But the choice of a more complex model does not ensure a better prediction. Models with many parameters have a high capacity to fit the noise and the particularities of the calibration dataset, at the cost of diminishing their generalisation capacity. In support of the principle of model parsimony, a model selection method based on the validation performance of the models, "traditionally" used in the context of conceptual rainfall-runoff modelling, was adapted to the choice of a FFN structure. This method was applied to two different case studies: river flow prediction based on knowledge of upstream flows, and rainfall-runoff modelling. The predictive powers of the neural networks selected are compared to the results obtained with a linear model and a conceptual model (GR4j). In both case studies, the method leads to the selection of neural network structures with a limited number of neurons in the hidden layer (two or three). Moreover, the validation results of the selected FNN and of the linear model are very close. The conceptual model, specifically dedicated to rainfall-runoff modelling, appears to outperform the other two approaches. These conclusions, drawn on specific case studies using a particular evaluation method, add to the debate on the usefulness of Artificial Neural Networks in hydrology. Keywords: forecasting; stream-flow; rainfall-runoff; Artificial Neural Networks


2013 ◽  
Vol 17 (1) ◽  
pp. 253-267 ◽  
Author(s):  
N. J. de Vos

Abstract. Despite theoretical benefits of recurrent artificial neural networks over their feedforward counterparts, it is still unclear whether the former offer practical advantages as rainfall–runoff models. The main drawback of recurrent networks is the increased complexity of the training procedure due to their architecture. This work uses the recently introduced and conceptually simple echo state networks for streamflow forecasts on twelve river basins in the Eastern United States, and compares them to a variety of traditional feedforward and recurrent approaches. Two modifications on the echo state network models are made that increase the hydrologically relevant information content of their internal state. The results show that the echo state networks outperform feedforward networks and are competitive with state-of-the-art recurrent networks, across a range of performance measures. This, along with their simplicity and ease of training, suggests that they can be considered promising alternatives to traditional artificial neural networks in rainfall–runoff modelling.


1995 ◽  
Vol 387 ◽  
Author(s):  
Chi Yung Fu ◽  
Loren Petrich ◽  
Benjamin Law

AbstractThe cost of a fabrication line, such as one in a semiconductor house, has increased dramatically over the years, and it is possibly already past the point that some new start-up company can have sufficient capital to build a new fabrication line. Such capital-intensive manufacturing needs better utilization of resources and management of equipment to maximize its productivity. In order to maximize the return from such a capital-intensive manufacturing line, we need to work on the following: 1) increasing the yield, 2) enhancing the flexibility of the fabrication line, 3) improving quality, and finally 4) minimizing the down time of the processing equipment. Because of the significant advances now made in the fields of artificial neural networks, fuzzy logic, machine learning and genetic algorithms, we advocate the use of these new tools in manufacturing. We term the applications to manufacturing of these and other such tools that mimic human intelligence neural manufacturing. This paper describes the effort at the Lawrence Livermore National Laboratory (LLNL) [1] to use artificial neural networks to address certain semiconductor process modeling, monitoring and control questions.


Sign in / Sign up

Export Citation Format

Share Document