Research on the natural image super-resolution reconstruction algorithm based on compressive perception theory and deep learning model

2016 ◽  
Vol 208 ◽  
pp. 117-126 ◽  
Author(s):  
Ganglong Duan ◽  
Wenxiu Hu ◽  
Jianren Wang
2021 ◽  
Vol 11 (14) ◽  
pp. 6292
Author(s):  
Tae-Gu Kim ◽  
Byoung-Ju Yun ◽  
Tae-Hun Kim ◽  
Jae-Young Lee ◽  
Kil-Houm Park ◽  
...  

In this study, we have proposed an algorithm that solves the problems which occur during the recognition of a vehicle license plate through closed-circuit television (CCTV) by using a deep learning model trained with a general database. The deep learning model which is commonly used suffers with a disadvantage of low recognition rate in the tilted and low-resolution images, as it is trained with images acquired from the front of the license plate. Furthermore, the vehicle images acquired by using CCTV have issues such as limitation of resolution and perspective distortion. Such factors make it difficult to apply the commonly used deep learning model. To improve the recognition rate, an algorithm which is a combination of the super-resolution generative adversarial network (SRGAN) model, and the perspective distortion correction algorithm is proposed in this paper. The accuracy of the proposed algorithm was verified with a character recognition algorithm YOLO v2, and the recognition rate of the vehicle license plate image was improved 8.8% from the original images.


Author(s):  
Chompunuch Sarasaen ◽  
Soumick Chatterjee ◽  
Mario Breitkopf ◽  
Georg Rose ◽  
Andreas Nürnberger ◽  
...  

2021 ◽  
Vol 13 (20) ◽  
pp. 4044
Author(s):  
Étienne Clabaut ◽  
Myriam Lemelin ◽  
Mickaël Germain ◽  
Yacine Bouroubi ◽  
Tony St-Pierre

Training a deep learning model requires highly variable data to permit reasonable generalization. If the variability in the data about to be processed is low, the interest in obtaining this generalization seems limited. Yet, it could prove interesting to specialize the model with respect to a particular theme. The use of enhanced super-resolution generative adversarial networks (ERSGAN), a specific type of deep learning architecture, allows the spatial resolution of remote sensing images to be increased by “hallucinating” non-existent details. In this study, we show that ESRGAN create better quality images when trained on thematically classified images than when trained on a wide variety of examples. All things being equal, we further show that the algorithm performs better on some themes than it does on others. Texture analysis shows that these performances are correlated with the inverse difference moment and entropy of the images.


2021 ◽  
Vol 1995 (1) ◽  
pp. 012034
Author(s):  
Qinqin Li ◽  
Xiaoming Guo ◽  
Jiangxue Han ◽  
Xiaoyang Zhang ◽  
Heng Liu

Sign in / Sign up

Export Citation Format

Share Document