A hybrid algorithm for low-rank approximation of nonnegative matrix factorization

2019 ◽  
Vol 364 ◽  
pp. 129-137
Author(s):  
Peitao Wang ◽  
Zhaoshui He ◽  
Kan Xie ◽  
Junbin Gao ◽  
Michael Antolovich ◽  
...  
2021 ◽  
Vol 37 ◽  
pp. 583-597
Author(s):  
Patrick Groetzner

In data science and machine learning, the method of nonnegative matrix factorization (NMF) is a powerful tool that enjoys great popularity. Depending on the concrete application, there exist several subclasses each of which performs a NMF under certain constraints. Consider a given square matrix $A$. The symmetric NMF aims for a nonnegative low-rank approximation $A\approx XX^T$ to $A$, where $X$ is entrywise nonnegative and of given order. Considering a rectangular input matrix $A$, the general NMF again aims for a nonnegative low-rank approximation to $A$ which is now of the type $A\approx XY$ for entrywise nonnegative matrices $X,Y$ of given order. In this paper, we introduce a new heuristic method to tackle the exact nonnegative matrix factorization problem (of type $A=XY$), based on projection approaches to solve a certain feasibility problem.


Author(s):  
Bharat Singh ◽  
Om Prakash Vyas

Now a day's application deal with Big Data has tremendously been used in the popular areas. To tackle with such kind of data various approaches have been developed by researchers in the last few decades. A recent investigated techniques to factored the data matrix through a known latent factor in a lower size space is the so called matrix factorization. In addition, one of the problems with the NMF approaches, its randomized valued could not provide absolute optimization in limited iteration, but having local optimization. Due to this, the authors have proposed a new approach that considers the initial values of the decomposition to tackle the issues of computationally expensive. They have devised an algorithm for initializing the values of the decomposed matrix based on the PSO. In this paper, the auhtors have intended a genetic algorithm based technique while incorporating the nonnegative matrix factorization. Through the experimental result, they will show the proposed method converse very fast in comparison to other low rank approximation like simple NMF multiplicative, and ACLS technique.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1187
Author(s):  
Peitao Wang ◽  
Zhaoshui He ◽  
Jun Lu ◽  
Beihai Tan ◽  
YuLei Bai ◽  
...  

Symmetric nonnegative matrix factorization (SNMF) approximates a symmetric nonnegative matrix by the product of a nonnegative low-rank matrix and its transpose. SNMF has been successfully used in many real-world applications such as clustering. In this paper, we propose an accelerated variant of the multiplicative update (MU) algorithm of He et al. designed to solve the SNMF problem. The accelerated algorithm is derived by using the extrapolation scheme of Nesterov and a restart strategy. The extrapolation scheme plays a leading role in accelerating the MU algorithm of He et al. and the restart strategy ensures that the objective function of SNMF is monotonically decreasing. We apply the accelerated algorithm to clustering problems and symmetric nonnegative tensor factorization (SNTF). The experiment results on both synthetic and real-world data show that it is more than four times faster than the MU algorithm of He et al. and performs favorably compared to recent state-of-the-art algorithms.


Author(s):  
Xunpeng Huang ◽  
Le Wu ◽  
Enhong Chen ◽  
Hengshu Zhu ◽  
Qi Liu ◽  
...  

Matrix Factorization (MF) is among the most widely used techniques for collaborative filtering based recommendation. Along this line, a critical demand is to incrementally refine the MF models when new ratings come in an online scenario. However, most of existing incremental MF algorithms are limited by specific MF models or strict use restrictions. In this paper, we propose a general incremental MF framework by designing a linear transformation of user and item latent vectors over time. This framework shows a relatively high accuracy with a computation and space efficient training process in an online scenario. Meanwhile, we explain the framework with a low-rank approximation perspective, and give an upper bound on the training error when this framework is used for incremental learning in some special cases. Finally, extensive experimental results on two real-world datasets clearly validate the effectiveness, efficiency and storage performance of the proposed framework.


Author(s):  
Xiaopeng Liu ◽  
Cong Liu ◽  
Xiaochen Liu

Due to the scattering and absorption effects in the undersea environment, underwater image enhancement is a challenging problem. To obtain the ground-truth data for training is also an open problem. So, the learning process is unavailable. In this paper, we propose a Low-Rank Nonnegative Matrix Factorization (LR-NMF) method, which only uses the degraded underwater image as input to generate the more clear and realistic image. According to the underwater image formation model, the degraded underwater image could be separated into three parts, the directed component, the back and forward scattering components. The latter two parts can be considered as scattering. The directed component is constrained to have a low rank. After that, the restored underwater image is obtained. The quantitative and qualitative analyses illustrate that the proposed method performed equivalent or better than the state-of-the-art methods. Yet, it’s simple to implement without the training process.


Sign in / Sign up

Export Citation Format

Share Document