A Real-time Dynamic Concept Adaptive Learning Algorithm for Exploitability Prediction

2021 ◽  
Author(s):  
Jiao Yin ◽  
Ming Jian Tang ◽  
Jinli Cao ◽  
Hua Wang ◽  
Mingshan You
2020 ◽  
Vol 10 (2) ◽  
pp. 42
Author(s):  
Othmar Othmar Mwambe ◽  
Phan Xuan Tan ◽  
Eiji Kamioka

Adaptive Educational Hypermedia Systems (AEHS) play a crucial role in supporting adaptive learning and immensely outperform learner-control based systems. AEHS’ page indexing and hyperspace rely mostly on navigation supports which provide the learners with a user-friendly interactive learning environment. Such AEHS features provide the systems with a unique ability to adapt learners’ preferences. However, obtaining timely and accurate information for their adaptive decision-making process is still a challenge due to the dynamic understanding of individual learner. This causes a spontaneous changing of learners’ learning styles that makes hard for system developers to integrate learning objects with learning styles on real-time basis. Thus, in previous research studies, multiple levels navigation supports have been applied to solve this problem. However, this approach destroys their learning motivation because of imposing time and work overload on learners. To address such a challenge, this study proposes a bioinformatics-based adaptive navigation support that was initiated by the alternation of learners’ motivation states on a real-time basis. EyeTracking sensor and adaptive time-locked Learning Objects (LOs) were used. Hence, learners’ pupil size dilation and reading and reaction time were used for the adaption process and evaluation. The results show that the proposed approach improved the AEHS adaptive process and increased learners’ performance up to 78%.


Author(s):  
Zhixiang Chen ◽  
Binhai Zhu ◽  
Xiannong Meng

In this chapter, machine-learning approaches to real-time intelligent Web search are discussed. The goal is to build an intelligent Web search system that can find the user’s desired information with as little relevance feedback from the user as possible. The system can achieve a significant search precision increase with a small number of iterations of user relevance feedback. A new machine-learning algorithm is designed as the core of the intelligent search component. This algorithm is applied to three different search engines with different emphases. This chapter presents the algorithm, the architectures, and the performances of these search engines. Future research issues regarding real-time intelligent Web search are also discussed.


2008 ◽  
Vol 2008 ◽  
pp. 1-14
Author(s):  
Lili Diao ◽  
Martin Guay

Heart dynamics are usually unknown and require the application of real-time control technique because of the fatal nature of most cardiac arrhythmias. The problem of controlling the heart dynamics in a real-time manner is formulated as an adaptive learning output-tracking problem. For a class of nonlinear dynamic systems with unknown nonlinearities and nonaffine control input, a Lyapunov-based technique is used to develop a control law. An adaptive learning algorithm is exploited that guarantees the stability of the closed-loop system and convergence of the output tracking error to an adjustable neighborhood of the origin. In addition, good approximation of the unknown nonlinearities is also achieved by incorporating a persistent exciting signal in the parameter update law. The effectiveness of the proposed method is demonstrated by an application to a cardiac conduction system modelled by two coupled driven oscillators.


2021 ◽  
Author(s):  
Thomas Wilschut ◽  
Florian Sense ◽  
Maarten van der Velde ◽  
Zafeirios Fountas ◽  
Sarah Maass ◽  
...  

Memorising vocabulary is an important aspect of formal foreign-language learning. Advances in cognitive psychology have led to the development of adaptive learning systems that make vocabulary learning more efficient. One way these computer-based systems optimize learning is by measuring learning performance in real time to create optimal repetition schedules for individual learners. While such adaptive learning systems have been successfully applied to word learning using keyboard-based input, they have thus far seen little application in spoken word learning. Here we present a system for adaptive, speech-based word learning using an adaptive model that was developed for and tested with typing-based word learning. We show that typing- and speech-based learning result in similar behavioral patterns that can be used to reliably estimate individual memory processes, and we extend earlier findings demonstrating that a response-time based adaptive learning system outperforms an accuracy-based, Leitner flashcard learning algorithm. In short, we show that adaptive learning benefits transfer from typing-based learning, to speech based learning. Our work provides a basis for the development of language learning applications that use real-time pronunciation assessment software to score the accuracy of the learner's pronunciations. The development of adaptive, speech-based learning applications is important for two reasons. First, by focusing on speech, the model can be applied for individuals whose typing skills are insufficient---as is demonstrated by the successful application of the model in an elderly participant population. Second, speech-based learning models are educationally relevant because they focus on what may be the most important aspect of language learning: to practice speech.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Lina Mao ◽  
Wenquan Li ◽  
Pengsen Hu ◽  
Guiliang Zhou ◽  
Huiting Zhang ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1933
Author(s):  
Hiroomi Hikawa ◽  
Yuta Ichikawa ◽  
Hidetaka Ito ◽  
Yutaka Maeda

In this paper, a real-time dynamic hand gesture recognition system with gesture spotting function is proposed. In the proposed system, input video frames are converted to feature vectors, and they are used to form a posture sequence vector that represents the input gesture. Then, gesture identification and gesture spotting are carried out in the self-organizing map (SOM)-Hebb classifier. The gesture spotting function detects the end of the gesture by using the vector distance between the posture sequence vector and the winner neuron’s weight vector. The proposed gesture recognition method was tested by simulation and real-time gesture recognition experiment. Results revealed that the system could recognize nine types of gesture with an accuracy of 96.6%, and it successfully outputted the recognition result at the end of gesture using the spotting result.


Sign in / Sign up

Export Citation Format

Share Document