Self-Organizing Radial Basis Function Neural Network Using Accelerated Second-Order Learning Algorithm

2021 ◽  
Author(s):  
Hong-Gui Han ◽  
Miao-Li Ma ◽  
Hong-Yan Yang ◽  
Jun-Fei Qiao
2011 ◽  
Vol 403-408 ◽  
pp. 3587-3593
Author(s):  
T.V.K. Hanumantha Rao ◽  
Saurabh Mishra ◽  
Sudhir Kumar Singh

In this paper, the artificial neural network method was used for Electrocardiogram (ECG) pattern analysis. The analysis of the ECG can benefit from the wide availability of computing technology as far as features and performances as well. This paper presents some results achieved by carrying out the classification tasks by integrating the most common features of ECG analysis. Four types of ECG patterns were chosen from the MIT-BIH database to be recognized, including normal sinus rhythm, long term atrial fibrillation, sudden cardiac death and congestive heart failure. The R-R interval features were performed as the characteristic representation of the original ECG signals to be fed into the neural network models. Two types of artificial neural network models, SOM (Self- Organizing maps) and RBF (Radial Basis Function) networks were separately trained and tested for ECG pattern recognition and experimental results of the different models have been compared. The trade-off between the time consuming training of artificial neural networks and their performance is also explored. The Radial Basis Function network exhibited the best performance and reached an overall accuracy of 93% and the Kohonen Self- Organizing map network reached an overall accuracy of 87.5%.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hongfei Li ◽  
Maolin Zhang

In order to improve the accuracy of shooting in basketball. A shooting accuracy prediction method based on the convergent improved resource allocating network (CIRAN) online radial basis function neural network (RBFNN) is proposed, and the RBFNN learning algorithm is improved. Through the collection of shooting motion images, feature point extraction, and edge contour feature extraction, the shooting motion trajectory is obtained. Using the online neural network based on the CIRAN learning algorithm to predict the accuracy of shooting, this method analyzes the radial basis function (RBF) network. Based on the RBF analysis, the number of network layers and the number of hidden layer neurons are adjusted and optimized. In order to improve the prediction accuracy of shooting in basketball, a method based on. Through the analysis, it can be known that the accuracy of both the traditional RBFNN and the CIRAN-based online neural network for the prediction of shooting accuracy is above 70%. The prediction accuracy of the online neural network for shooting is higher than that of the traditional one. This is mainly because the online update function of the learning algorithm can better adjust the corresponding structure with the development of the game and has a better generalization ability. In addition, because the CIRAN learning algorithm introduces the hidden layer neuron deletion strategy, its network structure is simpler than that of the traditional one, the number of hidden layer neurons is less, and the running time required is less, which can better meet the real-time requirements and provide a more scientific method for basketball training.


2013 ◽  
Vol 6 (3) ◽  
pp. 293-303 ◽  
Author(s):  
Ruibin Feng ◽  
Yi Xiao ◽  
Chi Sing Leung ◽  
Peter W. M. Tsang ◽  
John Sum

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3651
Author(s):  
Qin Yang ◽  
Zhaofa Ye ◽  
Xuzheng Li ◽  
Daozhu Wei ◽  
Shunhua Chen ◽  
...  

Aiming at addressing the problems of short battery life, low payload and unmeasured load ratio of logistics Unmanned Aerial Vehicles (UAVs), the Radial Basis Function (RBF) neural network was trained with the flight data of logistics UAV from the Internet of Things to predict the flight status of logistics UAVs. Under the condition that there are few available input samples and the convergence of RBF neural network is not accurate, a dynamic adjustment method of RBF neural network structure based on information entropy is proposed. This method calculates the information entropy of hidden layer neurons and output layer neurons, and quantifies the output information of hidden layer neurons and the interaction information between hidden layer neurons and output layer neurons. The structural design and optimization of RBF neural network were solved by increasing the hidden layer neurons or disconnecting unnecessary connections, according to the connection strength between neurons. The steepest descent learning algorithm was used to correct the parameters of the network structure to ensure the convergence accuracy of the RBF neural network. By predicting the regression values of the flight status of logistics UAVs, it is demonstrated that the information entropy-based RBF neural network proposed in this paper has good approximation ability for the prediction of nonlinear systems.


Sign in / Sign up

Export Citation Format

Share Document