scholarly journals Reduction of EphA4 receptor expression after spinal cord injury does not induce axonal regeneration or return of tcMMEP response

2007 ◽  
Vol 418 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Lillian Cruz-Orengo ◽  
Johnny D. Figueroa ◽  
Aranza Torrado ◽  
Anabel Puig ◽  
Scott R. Whittemore ◽  
...  
2009 ◽  
Vol 12 (9) ◽  
pp. 1106-1113 ◽  
Author(s):  
Laura Taylor Alto ◽  
Leif A Havton ◽  
James M Conner ◽  
Edmund R Hollis II ◽  
Armin Blesch ◽  
...  

2017 ◽  
Vol 117 (1) ◽  
pp. 215-229 ◽  
Author(s):  
Katelyn N. Benthall ◽  
Ryan A. Hough ◽  
Andrew D. McClellan

Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results. Thus, after disruption of long-axon projections from RS neurons in the lamprey, descending propriospinal (PS) neurons appear to be a viable compensatory mechanism for indirect activation of spinal locomotor networks.


2005 ◽  
Vol 163 (1-2) ◽  
pp. 185-189 ◽  
Author(s):  
Jan M. Schwab ◽  
Lianghao Guo ◽  
Hermann J. Schluesener

2015 ◽  
Vol 308 (12) ◽  
pp. R1021-R1033 ◽  
Author(s):  
April N. Herrity ◽  
Jeffrey C. Petruska ◽  
David P. Stirling ◽  
Kristofer K. Rau ◽  
Charles H. Hubscher

The vagus nerve is composed primarily of nonmyelinated sensory neurons whose cell bodies are located in the nodose ganglion (NG). The vagus has widespread projections that supply most visceral organs, including the bladder. Because of its nonspinal route, the vagus nerve itself is not directly damaged from spinal cord injury (SCI). Because most viscera, including bladder, are dually innervated by spinal and vagal sensory neurons, an impact of SCI on the sensory component of vagal circuitry may contribute to post-SCI visceral pathologies. To determine whether SCI, in male Wistar rats, might impact neurochemical characteristics of NG neurons, immunohistochemical assessments were performed for P2X3 receptor expression, isolectin B4 (IB4) binding, and substance P expression, three known injury-responsive markers in sensory neuronal subpopulations. In addition to examining the overall population of NG neurons, those innervating the urinary bladder also were assessed separately. All three of the molecular markers were represented in the NG from noninjured animals, with the majority of the neurons binding IB4. In the chronically injured rats, there was a significant increase in the number of NG neurons expressing P2X3 and a significant decrease in the number binding IB4 compared with noninjured animals, a finding that held true also for the bladder-innervating population. Overall, these results indicate that vagal afferents, including those innervating the bladder, display neurochemical plasticity post-SCI that may have implications for visceral homeostatic mechanisms and nociceptive signaling.


2017 ◽  
Vol 159 (5) ◽  
pp. 947-957 ◽  
Author(s):  
Dong Kwang Seo ◽  
Jeong Hoon Kim ◽  
Joongkee Min ◽  
Hyung Ho Yoon ◽  
Eun-Sil Shin ◽  
...  

2009 ◽  
pp. 110306202455053
Author(s):  
Hongsheng Liang ◽  
Peng Liang ◽  
Ye Xu ◽  
Jianing Wu ◽  
Tao Liang ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (32) ◽  
pp. 18677-18686
Author(s):  
Jia Liu ◽  
Kai Li ◽  
Ke Huang ◽  
Chengliang Yang ◽  
Zhipeng Huang ◽  
...  

Spinal cord injury (SCI) is a traumatic injury to the central nervous system (CNS) with a high rate of disability and a low capability of self-recovery.


Sign in / Sign up

Export Citation Format

Share Document