scholarly journals Early life stress disrupts social behavior and prefrontal cortex parvalbumin interneurons at an earlier time-point in females than in males

2014 ◽  
Vol 566 ◽  
pp. 131-136 ◽  
Author(s):  
Freedom H. Holland ◽  
Prabarna Ganguly ◽  
David N. Potter ◽  
Elena H. Chartoff ◽  
Heather C. Brenhouse
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Yuliya A. Ryabushkina ◽  
Vasiliy V. Reshetnikov ◽  
Natalya P. Bondar

Early-life stress affects neuronal plasticity of the brain regions participating in the implementation of social behavior. Our previous studies have shown that brief and prolonged separation of pups from their mothers leads to enhanced social behavior in adult female mice. The goal of the present study was to characterize the expression of genes (which are engaged in synaptic plasticity) Egr1, Npas4, Arc, and Homer1 in the prefrontal cortex and dorsal hippocampus of adult female mice with a history of early-life stress. In addition, we evaluated the expression of stress-related genes: glucocorticoid and mineralocorticoid receptors (Nr3c1 and Nr3c2) and Nr1d1, which encodes a transcription factor (also known as REVERBα) modulating sociability and anxiety-related behavior. C57Bl/6 mice were exposed to either maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal days 2 through 14. In adulthood, the behavior of female mice was analyzed by some behavioral tests, and on the day after the testing of social behavior, we measured the gene expression. We found increased Npas4 expression only in the prefrontal cortex and higher Nr1d1 expression in both the prefrontal cortex and dorsal hippocampus of adult female mice with a history of MS. The expression of the studied genes did not change in HD female mice. The expression of stress-related genes Nr3c1 and Nr3c2 was unaltered in both groups. We propose that the upregulation of Npas4 and Nr1d1 in females with a history of early-life stress and the corresponding enhancement of social behavior may be regarded as an adaptation mechanism reversing possible aberrations caused by early-life stress.


2021 ◽  
pp. 216770262110164
Author(s):  
Pan Liu ◽  
Matthew R. J. Vandermeer ◽  
Ola Mohamed Ali ◽  
Andrew R. Daoust ◽  
Marc F. Joanisse ◽  
...  

Understanding the development of depression can inform etiology and prevention/intervention. Maternal depression and maladaptive patterns of temperament (e.g., low positive emotionality [PE] or high negative emotionality, especially sadness) are known to predict depression. Although it is unclear how these risks cause depression, altered functional connectivity (FC) during negative-emotion processing may play an important role. We investigated whether maternal depression and age-3 emotionality predicted FC during negative mood reactivity in never-depressed preadolescents and whether these relationships were augmented by early-life stress. Maternal depression predicted decreased medial prefrontal cortex (mPFC)–amygdala and mPFC–insula FC but increased mPFC–posterior cingulate cortex (PCC) FC. PE predicted increased dorsolateral prefrontal cortex–amygdala FC, whereas sadness predicted increased PCC-based FC in insula, orbitofrontal cortex, and anterior cingulate cortex (ACC). Sadness was more strongly associated with PCC–insula and PCC–ACC FC as early stress increased. Findings indicate that early depression risks may be mediated by FC underlying negative-emotion processing.


2013 ◽  
Vol 65 (6) ◽  
pp. 1462-1470 ◽  
Author(s):  
Agnieszka Chocyk ◽  
Iwona Majcher-Maślanka ◽  
Dorota Dudys ◽  
Aleksandra Przyborowska ◽  
Krzysztof Wędzony

2020 ◽  
Vol 379 ◽  
pp. 112306 ◽  
Author(s):  
Ken-ichi Ohta ◽  
Shingo Suzuki ◽  
Katsuhiko Warita ◽  
Kazunori Sumitani ◽  
Chiaki Tenkumo ◽  
...  

2020 ◽  
Vol 10 (7) ◽  
pp. 447 ◽  
Author(s):  
Héctor González-Pardo ◽  
Jorge L. Arias ◽  
Eneritz Gómez-Lázaro ◽  
Isabel López Taboada ◽  
Nélida M. Conejo

Sex differences have been reported in the susceptibility to early life stress and its neurobiological correlates in humans and experimental animals. However, most of the current research with animal models of early stress has been performed mainly in males. In the present study, prolonged maternal separation (MS) paradigm was applied as an animal model to resemble the effects of adverse early experiences in male and female rats. Regional brain mitochondrial function, monoaminergic activity, and neuroinflammation were evaluated as adults. Mitochondrial energy metabolism was greatly decreased in MS females as compared with MS males in the prefrontal cortex, dorsal hippocampus, and the nucleus accumbens shell. In addition, MS males had lower serotonin levels and increased serotonin turnover in the prefrontal cortex and the hippocampus. However, MS females showed increased dopamine turnover in the prefrontal cortex and increased norepinephrine turnover in the striatum, but decreased dopamine turnover in the hippocampus. Sex differences were also found for pro-inflammatory cytokine levels, with increased levels of TNF-α and IL-6 in the prefrontal cortex and hippocampus of MS males, and increased IL-6 levels in the striatum of MS females. These results evidence the complex sex- and brain region-specific long-term consequences of early life stress.


2020 ◽  
Vol 9 (2) ◽  
pp. 468 ◽  
Author(s):  
Clarissa Catale ◽  
Stephen Gironda ◽  
Luisa Lo Iacono ◽  
Valeria Carola

The putative effects of early-life stress (ELS) on later behavior and neurobiology have been widely investigated. Recently, microglia have been implicated in mediating some of the effects of ELS on behavior. In this review, findings from preclinical and clinical literature with a specific focus on microglial alterations induced by the exposure to ELS (i.e., exposure to behavioral stressors or environmental agents and infection) are summarized. These studies were utilized to interpret changes in developmental trajectories based on the time at which the stress occurred, as well as the paradigm used. ELS and microglial alterations were found to be associated with a wide array of deficits including cognitive performance, memory, reward processing, and processing of social stimuli. Four general conclusions emerged: (1) ELS interferes with microglial developmental programs, including their proliferation and death and their phagocytic activity; (2) this can affect neuronal and non-neuronal developmental processes, which are dynamic during development and for which microglial activity is instrumental; (3) the effects are extremely dependent on the time point at which the investigation is carried out; and (4) both pre- and postnatal ELS can prime microglial reactivity, indicating a long-lasting alteration, which has been implicated in behavioral abnormalities later in life.


Cell Reports ◽  
2021 ◽  
Vol 35 (5) ◽  
pp. 109074
Author(s):  
Won Chan Oh ◽  
Gabriela Rodríguez ◽  
Douglas Asede ◽  
Kanghoon Jung ◽  
In-Wook Hwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document