Association of tripartite motif family-like 2 (TRIML2) polymorphisms with late-onset Alzheimer’s disease risk in a Korean population

2016 ◽  
Vol 630 ◽  
pp. 127-131 ◽  
Author(s):  
Won Sub Kang ◽  
Jin Kyung Park ◽  
Young Jong Kim ◽  
Ah Rang Cho ◽  
Hae Jeong Park ◽  
...  
2015 ◽  
Vol 49 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Pau Pastor ◽  
Fermín Moreno ◽  
Jordi Clarimón ◽  
Agustín Ruiz ◽  
Onofre Combarros ◽  
...  

2018 ◽  
Vol 66 ◽  
pp. 178.e1-178.e8 ◽  
Author(s):  
Shuquan Rao ◽  
Mahdi Ghani ◽  
Zhiyun Guo ◽  
Yuetiva Deming ◽  
Kesheng Wang ◽  
...  

2019 ◽  
Vol 39 (18) ◽  
Author(s):  
Petra van Bergeijk ◽  
Uthpala Seneviratne ◽  
Estel Aparicio-Prat ◽  
Robert Stanton ◽  
Samuel A. Hasson

ABSTRACTA single nucleotide polymorphism (SNP) in exon 2 of the CD33 gene is associated with reduced susceptibility to late-onset Alzheimer’s disease (AD) and causal for elevated mRNA lacking exon 2. In contrast to full-length CD33, transcripts lacking exon 2 result in CD33 protein unable to suppress activation responses in myeloid cells, including microglia. Currently, little is known about the regulation of CD33 exon 2 splicing. Using functional genomics and proteomic approaches, we found that SRSF1 and PTBP1 act as splicing enhancers to increase CD33 exon 2 inclusion in mRNA. Binding of PTBP1 to RNA sequences proximal to the intron 1-exon 2 splice junction is altered by the SNP and represents a potential mechanism behind the SNP-genotype dependent alternative splicing. Our studies also reveal that binding of SRSF1 to the CD33 RNA is not altered by the SNP genotype. Instead, a putative SRSF1 binding sequence at the 3′ end of exon 2 directs CD33 exon 2 inclusion into the mRNA, indicating that PTBP1 and SRSF1 promote full-length isoform expression through different mechanisms. Our findings shed light on molecular interactions that regulate CD33 exon 2 splicing, ultimately impacting receptor expression on the cell surface. These data aid in the understanding of CD33’s regulation of microglial signaling underpinning the AD genetic associations.


2017 ◽  
Vol 57 (2) ◽  
pp. 423-436 ◽  
Author(s):  
Shea J. Andrews ◽  
Debjani Das ◽  
Kaarin J. Anstey ◽  
Simon Easteal

2021 ◽  
Author(s):  
Laurie Arnaud ◽  
Philippe Benech ◽  
Louise Greetham ◽  
Delphine Stephan ◽  
Angélique Jimenez ◽  
...  

ABSTRACTThe Apolipoprotein E4 (APOE4) is the major allelic risk factor for late-onset Alzheimer’s disease (AD). APOE4 associates with a pro-inflammatory phenotype increasingly considered as critical in AD initiation and progression. Yet, the mechanisms driving an APOE4-dependent neuroinflammation remain unelucidated. Leveraging patient specific human induced Pluripotent Stem Cells (iPSCs) we demonstrate inflammatory chronicity and hyperactivated responses upon cytokines in human APOE4 astrocytes via a novel mechanism. We uncovered that APOE4 represses Transgelin 3 (TAGLN3), a new interacting partner of IκBα, thus increasing the NF-kB activity. The transcriptional repression of TAGLN3 was shown to result from an APOE4-dependent histone deacetylase (HDAC) activity. The functional relevance of TAGLN3 was demonstrated by the attenuation of APOE4-driven neuroinflammation after TAGLN3 supplementation. Importantly, TAGLN3 downregulation was confirmed in the brain of AD patients. Our findings highlight the APOE4-TAGLN3 axis as a new pathogenic pathway that paves the way for the development of therapeutics to prevent maladaptive inflammatory responses in APOE4 carriers, while placing TAGLN3 downregulation as a potential biomarker of AD.GRAPHICAL ABSTRACT


2020 ◽  
Author(s):  
Neha Raghavan ◽  
Sanjeev Sariya ◽  
Annie Lee ◽  
Yizhe Gao ◽  
Dolly Reyes-Dumeyer ◽  
...  

INTRODUCTION: Late-onset Alzheimer's disease (AD) frequently co-occurs with cerebrovascular disease. We hypothesized that interactions between genes and cerebrovascular risk factors (CVRFs) contribute to AD risk. METHODS: Participants age 65 years or older from five multi-ethnic cohorts (N=14,669) were included in genome-wide association meta-analyses for AD including an interaction factor for a CVRF score created from body mass index, hypertension, heart disease, and diabetes. Significant gene level results were substantiated using neuropathological and gene expression data. RESULTS: At the gene-level, FMNL2 interacted with the CVRF score to significantly modify AD risk (p= 7.7x10-7). A SNP within FRMD4B, rs1498837, was nominally significant (p=7.95x10-7). Increased FMNL2 expression was significantly associated with brain infarcts and AD. DISCUSSION: FMNL2 is highly expressed in the brain and has been associated with ischemic stroke and failures in endosomal trafficking, a major pathway in AD pathology. The results highlight an interaction between FMNL2 and CVRFs on AD susceptibility.


2017 ◽  
Vol 13 (7S_Part_13) ◽  
pp. P652-P653
Author(s):  
Ji Young Song ◽  
Won Sub Kang ◽  
Jong Woo Kim ◽  
Jong-Woo Paik

2018 ◽  
Author(s):  
Dervis A. Salih ◽  
Sevinc Bayram ◽  
Manuel S. Guelfi ◽  
Regina Reynolds ◽  
Maryam Shoai ◽  
...  

AbstractGenetic analysis of late-onset Alzheimer’s disease risk has previously identified a network of largely microglial genes that form a transcriptional network. In transgenic mouse models of amyloid deposition we have previously shown that the expression of many of the mouse orthologs of these genes are co-ordinately up-regulated by amyloid deposition. Here we investigate whether systematic analysis of other members of this mouse amyloid-responsive network predicts other Alzheimer’s risk loci. This statistical comparison of the mouse amyloid-response network with Alzheimer’s disease genome-wide association studies identifies 5 other genetic risk loci for the disease (OAS1, CXCL10, LAPTM5, ITGAM and LILRB4). This work suggests that genetic variability in the microglial response to amyloid deposition is a major determinant for Alzheimer’s risk.One Sentence SummaryIdentification of 5 new risk loci for Alzheimer’s by statistical comparison of mouse Aβ microglial response with gene-based SNPs from human GWAS


2018 ◽  
Author(s):  
Iris E Jansen ◽  
Jeanne E Savage ◽  
Kyoko Watanabe ◽  
Julien Bryois ◽  
Dylan M Williams ◽  
...  

AbstractLate onset Alzheimer’s disease (AD) is the most common form of dementia with more than 35 million people affected worldwide, and no curative treatment available. AD is highly heritable and recent genome-wide meta-analyses have identified over 20 genomic loci associated with AD, yet only explaining a small proportion of the genetic variance indicating that undiscovered loci exist. Here, we performed the largest genome-wide association study of clinically diagnosed AD and AD-by-proxy (71,880 AD cases, 383,378 controls). AD-by-proxy status is based on parental AD diagnosis, and showed strong genetic correlation with AD (rg=0.81). Genetic meta analysis identified 29 risk loci, of which 9 are novel, and implicating 215 potential causative genes. Independent replication further supports these novel loci in AD. Associated genes are strongly expressed in immune-related tissues and cell types (spleen, liver and microglia). Furthermore, gene-set analyses indicate the genetic contribution of biological mechanisms involved in lipid-related processes and degradation of amyloid precursor proteins. We show strong genetic correlations with multiple health-related outcomes, and Mendelian randomisation results suggest a protective effect of cognitive ability on AD risk. These results are a step forward in identifying more of the genetic factors that contribute to AD risk and add novel insights into the neurobiology of AD to guide new drug development.


Sign in / Sign up

Export Citation Format

Share Document