scholarly journals Genetic meta-analysis identifies 9 novel loci and functional pathways for Alzheimer’s disease risk

2018 ◽  
Author(s):  
Iris E Jansen ◽  
Jeanne E Savage ◽  
Kyoko Watanabe ◽  
Julien Bryois ◽  
Dylan M Williams ◽  
...  

AbstractLate onset Alzheimer’s disease (AD) is the most common form of dementia with more than 35 million people affected worldwide, and no curative treatment available. AD is highly heritable and recent genome-wide meta-analyses have identified over 20 genomic loci associated with AD, yet only explaining a small proportion of the genetic variance indicating that undiscovered loci exist. Here, we performed the largest genome-wide association study of clinically diagnosed AD and AD-by-proxy (71,880 AD cases, 383,378 controls). AD-by-proxy status is based on parental AD diagnosis, and showed strong genetic correlation with AD (rg=0.81). Genetic meta analysis identified 29 risk loci, of which 9 are novel, and implicating 215 potential causative genes. Independent replication further supports these novel loci in AD. Associated genes are strongly expressed in immune-related tissues and cell types (spleen, liver and microglia). Furthermore, gene-set analyses indicate the genetic contribution of biological mechanisms involved in lipid-related processes and degradation of amyloid precursor proteins. We show strong genetic correlations with multiple health-related outcomes, and Mendelian randomisation results suggest a protective effect of cognitive ability on AD risk. These results are a step forward in identifying more of the genetic factors that contribute to AD risk and add novel insights into the neurobiology of AD to guide new drug development.

2019 ◽  
Vol 51 (3) ◽  
pp. 404-413 ◽  
Author(s):  
Iris E. Jansen ◽  
Jeanne E. Savage ◽  
Kyoko Watanabe ◽  
Julien Bryois ◽  
Dylan M. Williams ◽  
...  

2021 ◽  
Author(s):  
Adam C. Naj ◽  
Ganna Leonenko ◽  
Xueqiu Jian ◽  
Benjamin Grenier-Boley ◽  
Maria Carolina Dalmasso ◽  
...  

Risk for late-onset Alzheimer's disease (LOAD) is driven by multiple loci primarily identified by genome-wide association studies, many of which are common variants with minor allele frequencies (MAF)>0.01. To identify additional common and rare LOAD risk variants, we performed a GWAS on 25,170 LOAD subjects and 41,052 cognitively normal controls in 44 datasets from the International Genomics of Alzheimer's Project (IGAP). Existing genotype data were imputed using the dense, high-resolution Haplotype Reference Consortium (HRC) r1.1 reference panel. Stage 1 associations of P<10-5 were meta-analyzed with the European Alzheimer's Disease Biobank (EADB) (n=20,301 cases; 21,839 controls) (stage 2 combined IGAP and EADB). An expanded meta-analysis was performed using a GWAS of parental AD/dementia history in the UK Biobank (UKBB) (n=35,214 cases; 180,791 controls) (stage 3 combined IGAP, EADB, and UKBB). Common variant (MAF≥0.01) associations were identified for 29 loci in stage 2, including novel genome-wide significant associations at TSPAN14 (P=2.33×10-12), SHARPIN (P=1.56×10-9), and ATF5/SIGLEC11 (P=1.03[mult]10-8), and newly significant associations without using AD proxy cases in MTSS1L/IL34 (P=1.80×10-8), APH1B (P=2.10×10-13), and CLNK (P=2.24×10-10). Rare variant (MAF<0.01) associations with genome-wide significance in stage 2 included multiple variants in APOE and TREM2, and a novel association of a rare variant (rs143080277; MAF=0.0054; P=2.69×10-9) in NCK2, further strengthened with the inclusion of UKBB data in stage 3 (P=7.17×10-13). Single-nucleus sequence data shows that NCK2 is highly expressed in amyloid-responsive microglial cells, suggesting a role in LOAD pathology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hung-Hsin Chen ◽  
Lauren E. Petty ◽  
Jin Sha ◽  
Yi Zhao ◽  
Amanda Kuzma ◽  
...  

AbstractLate-onset Alzheimer disease (LOAD) is highly polygenic, with a heritability estimated between 40 and 80%, yet risk variants identified in genome-wide studies explain only ~8% of phenotypic variance. Due to its increased power and interpretability, genetically regulated expression (GReX) analysis is an emerging approach to investigate the genetic mechanisms of complex diseases. Here, we conducted GReX analysis within and across 51 tissues on 39 LOAD GWAS data sets comprising 58,713 cases and controls from the Alzheimer’s Disease Genetics Consortium (ADGC) and the International Genomics of Alzheimer’s Project (IGAP). Meta-analysis across studies identified 216 unique significant genes, including 72 with no previously reported LOAD GWAS associations. Cross-brain-tissue and cross-GTEx models revealed eight additional genes significantly associated with LOAD. Conditional analysis of previously reported loci using established LOAD-risk variants identified eight genes reaching genome-wide significance independent of known signals. Moreover, the proportion of SNP-based heritability is highly enriched in genes identified by GReX analysis. In summary, GReX-based meta-analysis in LOAD identifies 216 genes (including 72 novel genes), illuminating the role of gene regulatory models in LOAD.


2020 ◽  
Author(s):  
Easwaran Ramamurthy ◽  
Gwyneth Welch ◽  
Jemmie Cheng ◽  
Yixin Yuan ◽  
Laura Gunsalus ◽  
...  

We profile genome-wide histone 3 lysine 27 acetylation (H3K27ac) of 3 major brain cell types from hippocampus and dorsolateral prefrontal cortex (dlPFC) of subjects with and without Alzheimer’s Disease (AD). We confirm that single nucleotide polymorphisms (SNPs) associated with late onset AD (LOAD) prefer to reside in the microglial histone acetylome, which varies most strongly with age. We observe acetylation differences associated with AD pathology at 3,598 peaks, predominantly in an oligodendrocyte-enriched population. Strikingly, these differences occur at the promoters of known early onset AD (EOAD) risk genes (APP, PSEN1, PSEN2, BACE1), late onset AD (LOAD) risk genes (BIN1, PICALM, CLU, ADAM10, ADAMTS4, SORL1 and FERMT2), and putative enhancers annotated to other genes associated with AD pathology (MAPT). More broadly, acetylation differences in the oligodendrocyte-enriched population occur near genes in pathways for central nervous system myelination and oxidative phosphorylation. In most cases, these promoter acetylation differences are associated with differences in transcription in oligodendrocytes. Overall, we reveal deregulation of known and novel pathways in AD and highlight genomic regions as therapeutic targets in oligodendrocytes of hippocampus and dlPFC.


2018 ◽  
Author(s):  
BW Kunkle ◽  
B Grenier-Boley ◽  
R Sims ◽  
JC Bis ◽  
AC Naj ◽  
...  

IntroductionLate-onset Alzheimer’s disease (LOAD, onset age > 60 years) is the most prevalent dementia in the elderly1, and risk is partially driven by genetics2. Many of the loci responsible for this genetic risk were identified by genome-wide association studies (GWAS)3–8. To identify additional LOAD risk loci, the we performed the largest GWAS to date (89,769 individuals), analyzing both common and rare variants. We confirm 20 previous LOAD risk loci and identify four new genome-wide loci (IQCK, ACE, ADAM10, and ADAMTS1). Pathway analysis of these data implicates the immune system and lipid metabolism, and for the first time tau binding proteins and APP metabolism. These findings show that genetic variants affecting APP and Aβ processing are not only associated with early-onset autosomal dominant AD but also with LOAD. Analysis of AD risk genes and pathways show enrichment for rare variants (P = 1.32 × 10−7) indicating that additional rare variants remain to be identified.


2008 ◽  
Vol 1 (1) ◽  
Author(s):  
Richard Abraham ◽  
Valentina Moskvina ◽  
Rebecca Sims ◽  
Paul Hollingworth ◽  
Angharad Morgan ◽  
...  

2015 ◽  
Vol 25 (4) ◽  
pp. 139-146 ◽  
Author(s):  
Atsushi Hirano ◽  
Tomoyuki Ohara ◽  
Atsushi Takahashi ◽  
Masayuki Aoki ◽  
Yuta Fuyuno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document