Robust cost-sensitive kernel method with Blinex loss and its applications in credit risk evaluation

2021 ◽  
Author(s):  
Jingjing Tang ◽  
Jiahui Li ◽  
Weiqi Xu ◽  
Yingjie Tian ◽  
Xuchan Ju ◽  
...  
2018 ◽  
Vol 10 (10) ◽  
pp. 3699 ◽  
Author(s):  
WeiMing Mou ◽  
Wing-Keung Wong ◽  
Michael McAleer

Supply chain finance has broken through traditional credit modes and advanced rapidly as a creative financial business discipline. Core enterprises have played a critical role in the credit enhancement of supply chain finance. Through the analysis of core enterprise credit risks in supply chain finance, by means of a ‘fuzzy analytical hierarchy process’ (FAHP), the paper constructs a supply chain financial credit risk evaluation system, making quantitative measurements and evaluation of core enterprise credit risk. This enables enterprises to take measures to control credit risk, thereby promoting the healthy development of supply chain finance. The examination of core enterprise supply chains suggests that a unified information file should be collected based on the core enterprise, including the operating conditions, asset status, industry status, credit record, effective information to the database, collecting related data upstream and downstream of the archives around the core enterprise, developing a data information system, electronic data information, and updating the database accurately using the latest information that might be available. Moreover, supply chain finance and modern information technology should be integrated to establish the sharing of information resources and realize the exchange of information flows, capital flows, and logistics between banks. This should reduce a variety of risks and improve the efficiency and effectiveness of supply chain finance.


Author(s):  
Novan Wijaya

Credit risk evaluation is an importanttopic in financial risk management and become a major focus in the banking sector. This research discusses a credit risk evaluation system using an artificial neural network model based on backpropagation algorithm. This system is to train and test the neural network to determine the predictive value of credit risk, whether high riskorlow risk. This neural network uses 14 input layers, nine hidden layers and an output layer, and the data used comes from the bank that has branches in EastJakarta. The results showed that neural network can be used effectively in the evaluation of credit risk with accuracy of 88% from 100 test data


Author(s):  
Z. Yang ◽  
D. Wu ◽  
G. Fu ◽  
C. Luo

Author(s):  
Abhinaba Dattachaudhuri ◽  
Saroj Biswas ◽  
Sunita Sarkar ◽  
Arpita Nath Boruah

Author(s):  
Shuxia Wang ◽  
Yuwei Qi ◽  
Bin Fu ◽  
Hongzhi Liu

The main difficulty of credit risk evaluation is to evaluate borrowers' willingness of repayment, which is a subjective factor depending on the thoughts and ideas of borrowers. Text description is a kind of human behavior which reflects the mental process of writers. The authors identify the characteristics of borrowers from their text descriptions and further use them to evaluate the credit risk of loans. Experimental results show that: (1) textual information is a good choice when traditional financial information is missing. The authors can achieve similar accuracy using only textual information as traditional methods which use financial information and credit information from the third party. (2) Textual information is a good complementary information source to traditional financial information sources. Using textual information can improve the performance of credit risk evaluation system when combined with traditional financial information.


Author(s):  
Asogbon Mojisola Grace ◽  
Samuel Oluwarotimi Williams

Credit risk evaluation techniques that aid effective decisions in credit lending are of great importance to the financial and banking industries. Such techniques assist credit managers to minimize the risks often associated with wrong decision making. Several techniques have been developed in the time past for credit risk evaluation and these techniques suffer from one form of limitation or the other. Recently, powerful soft computing tools have been proposed for problem solving among which are the neural networks and fuzzy logic. In this study, a neural network based on backpropagation learning algorithm and a fuzzy inference system based on Mamdani model were developed to evaluate the risk level of credit applicants. A comparative analysis of the performances of both systems was carried out and experimental results show that neural network with an overall prediction accuracy of 96.89% performed better than the fuzzy logic method with 94.44%. Finding from this study could provide useful information on how to improve the performance of existing credit risk evaluation systems.


Sign in / Sign up

Export Citation Format

Share Document