Combinatorial code of cell-recognition molecules for the axonal segregation of olfactory sensory neurons

2007 ◽  
Vol 58 ◽  
pp. S102
Author(s):  
Ai Nakashima ◽  
Haruki Takeuchi ◽  
Shou Serizawa ◽  
Hitoshi Sakano
2018 ◽  
Vol 98 (3) ◽  
pp. 1739-1763 ◽  
Author(s):  
Désirée Maßberg ◽  
Hanns Hatt

Olfactory receptors (ORs) are not exclusively expressed in the olfactory sensory neurons; they are also observed outside of the olfactory system in all other human tissues tested to date, including the testis, lung, intestine, skin, heart, and blood. Within these tissues, certain ORs have been determined to be exclusively expressed in only one tissue, whereas other ORs are more widely distributed in many different tissues throughout the human body. For most of the ectopically expressed ORs, limited data are available for their functional roles. They have been shown to be involved in the modulation of cell-cell recognition, migration, proliferation, the apoptotic cycle, exocytosis, and pathfinding processes. Additionally, there is a growing body of evidence that they have the potential to serve as diagnostic and therapeutic tools, as ORs are highly expressed in different cancer tissues. Interestingly, in addition to the canonical signaling pathways activated by ORs in olfactory sensory neurons, alternative pathways have been demonstrated in nonolfactory tissues. In this review, the existing data concerning the expression, as well as the physiological and pathophysiological functions, of ORs outside of the nose are highlighted to provide insights into future lines of research.


2019 ◽  
Author(s):  
Lu Xu ◽  
Wenze Li ◽  
Venkatakaushik Voleti ◽  
Elizabeth M. C. Hillman ◽  
Stuart Firestein

AbstractWe utilized swept confocally aligned planar excitation (SCAPE) microscopy to measure odor-driven activity simultaneously in many (>10,000) olfactory sensory neurons distributed over large areas of intact mouse olfactory epithelium. This approach allowed us to investigate the responses to mixtures or blends of odors and their components, a more realistic stimulus than monomolecular odors. In up to 38% of responding cells, responses to a mixture of odors were different - absent, smaller or larger - than what would be expected from the sum of the individual components. Further investigation revealed instances of both antagonism and allosteric enhancement in the primary olfactory sensory neurons. All 10 of the odor compounds tested were found to act as both agonists and antagonists at different receptors. We present a hypothetical scheme for how modulation at the peripheral receptors increases the capability of the olfactory system to recognize patterns of complex odor mixtures. The widespread modulation of primary sensory receptors argues against a simple combinatorial code and should motivate a search for alternative coding strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kota Ezaki ◽  
Takashi Yamashita ◽  
Thomas Carle ◽  
Hidehiro Watanabe ◽  
Fumio Yokohari ◽  
...  

AbstractAlthough praying mantises rely mainly on vision for predatory behaviours, olfaction also plays a critical role in feeding and mating behaviours. However, the receptive processes underlying olfactory signals remain unclear. Here, we identified olfactory sensory neurons (OSNs) that are highly tuned to detect aldehydes in the mantis Tenodera aridifolia. In extracellular recordings from OSNs in basiconic sensilla on the antennae, we observed three different spike shapes, indicating that at least three OSNs are housed in a single basiconic sensillum. Unexpectedly, one of the three OSNs exhibited strong excitatory responses to a set of aldehydes. Based on the similarities of the response spectra to 15 different aldehydes, the aldehyde-specific OSNs were classified into three classes: B, S, and M. Class B broadly responded to most aldehydes used as stimulants; class S responded to short-chain aldehydes (C3–C7); and class M responded to middle-length chain aldehydes (C6–C9). Thus, aldehyde molecules can be finely discriminated based on the activity patterns of a population of OSNs. Because many insects emit aldehydes for pheromonal communication, mantises might use aldehydes as olfactory cues for locating prey habitat.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Gowoon Son ◽  
Seung-Jun Yoo ◽  
Shinwoo Kang ◽  
Ameer Rasheed ◽  
Da Hae Jung ◽  
...  

Abstract Background Hyposmia in Alzheimer’s disease (AD) is a typical early symptom according to numerous previous clinical studies. Although amyloid-β (Aβ), which is one of the toxic factors upregulated early in AD, has been identified in many studies, even in the peripheral areas of the olfactory system, the pathology involving olfactory sensory neurons (OSNs) remains poorly understood. Methods Here, we focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants. We also confirmed histologically the pathological changes in 3-month-old 5xFAD mouse models, which recapitulates AD pathology. We introduced a numeric scale histologically to compare physiological phenomenon and local tissue lesions regardless of the anatomical plane. Results We observed the odorant group that the 5xFAD mice showed reduced responses to odorants. These also did not physiologically activate OSNs that propagate their axons to the ventral olfactory bulb. Interestingly, the amount of accumulated amyloid-β (Aβ) was high in the OSNs located in the olfactory epithelial ectoturbinate and the ventral olfactory bulb glomeruli. We also observed irreversible damage to the ectoturbinate of the olfactory epithelium by measuring the impaired neuronal turnover ratio from the basal cells to the matured OSNs. Conclusions Our results showed that partial and asymmetrical accumulation of Aβ coincided with physiologically and structurally damaged areas in the peripheral olfactory system, which evoked hyporeactivity to some odorants. Taken together, partial olfactory dysfunction closely associated with peripheral OSN’s loss could be a leading cause of AD-related hyposmia, a characteristic of early AD.


Sign in / Sign up

Export Citation Format

Share Document